BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 22030098)

  • 1. Substrate oxidation and cardiac performance during exercise in disorders of long chain fatty acid oxidation.
    Behrend AM; Harding CO; Shoemaker JD; Matern D; Sahn DJ; Elliot DL; Gillingham MB
    Mol Genet Metab; 2012 Jan; 105(1):110-5. PubMed ID: 22030098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac tissue citric acid cycle intermediates in exercised very long-chain acyl-CoA dehydrogenase-deficient mice fed triheptanoin or medium-chain triglyceride.
    Gaston G; Gangoiti JA; Winn S; Chan B; Barshop BA; Harding CO; Gillingham MB
    J Inherit Metab Dis; 2020 Nov; 43(6):1232-1242. PubMed ID: 33448436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) mouse to compensate a defective fatty acid β-oxidation.
    Tucci S; Herebian D; Sturm M; Seibt A; Spiekerkoetter U
    PLoS One; 2012; 7(9):e45429. PubMed ID: 23024820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: a double blinded, randomized controlled trial.
    Gillingham MB; Heitner SB; Martin J; Rose S; Goldstein A; El-Gharbawy AH; Deward S; Lasarev MR; Pollaro J; DeLany JP; Burchill LJ; Goodpaster B; Shoemaker J; Matern D; Harding CO; Vockley J
    J Inherit Metab Dis; 2017 Nov; 40(6):831-843. PubMed ID: 28871440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bezafibrate in skeletal muscle fatty acid oxidation disorders: a randomized clinical trial.
    Ørngreen MC; Madsen KL; Preisler N; Andersen G; Vissing J; Laforêt P
    Neurology; 2014 Feb; 82(7):607-13. PubMed ID: 24453079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-chain fatty acid oxidation during early human development.
    Oey NA; den Boer ME; Wijburg FA; Vekemans M; Augé J; Steiner C; Wanders RJ; Waterham HR; Ruiter JP; Attié-Bitach T
    Pediatr Res; 2005 Jun; 57(6):755-9. PubMed ID: 15845636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medium branched chain fatty acids improve the profile of tricarboxylic acid cycle intermediates in mitochondrial fatty acid β-oxidation deficient cells: A comparative study.
    Karunanidhi A; Van't Land C; Rajasundaram D; Grings M; Vockley J; Mohsen AW
    J Inherit Metab Dis; 2022 May; 45(3):541-556. PubMed ID: 35076099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Very long-chain acyl-CoA dehydrogenase (VLCAD-) deficiency-studies on treatment effects and long-term outcomes in mouse models.
    Tucci S
    J Inherit Metab Dis; 2017 May; 40(3):317-323. PubMed ID: 28247148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic control during exercise with and without medium-chain triglycerides (MCT) in children with long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency.
    Gillingham MB; Scott B; Elliott D; Harding CO
    Mol Genet Metab; 2006; 89(1-2):58-63. PubMed ID: 16876451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutritional ketosis improves exercise metabolism in patients with very long-chain acyl-CoA dehydrogenase deficiency.
    Bleeker JC; Visser G; Clarke K; Ferdinandusse S; de Haan FH; Houtkooper RH; IJlst L; Kok IL; Langeveld M; van der Pol WL; de Sain-van der Velden MGM; Sibeijn-Kuiper A; Takken T; Wanders RJA; van Weeghel M; Wijburg FA; van der Woude LH; Wüst RCI; Cox PJ; Jeneson JAL
    J Inherit Metab Dis; 2020 Jul; 43(4):787-799. PubMed ID: 31955429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food withdrawal lowers energy expenditure and induces inactivity in long-chain fatty acid oxidation-deficient mouse models.
    Diekman EF; van Weeghel M; Wanders RJ; Visser G; Houten SM
    FASEB J; 2014 Jul; 28(7):2891-900. PubMed ID: 24648546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation.
    McCoin CS; Piccolo BD; Knotts TA; Matern D; Vockley J; Gillingham MB; Adams SH
    J Inherit Metab Dis; 2016 May; 39(3):399-408. PubMed ID: 26907176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.
    Tucci S; Behringer S; Spiekerkoetter U
    FEBS J; 2015 Nov; 282(21):4242-53. PubMed ID: 26284828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A heterozygous missense mutation in adolescent-onset very long-chain acyl-CoA dehydrogenase deficiency with exercise-induced rhabdomyolysis.
    Hisahara S; Matsushita T; Furuyama H; Tajima G; Shigematsu Y; Imai T; Shimohama S
    Tohoku J Exp Med; 2015 Apr; 235(4):305-10. PubMed ID: 25843429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-exercise medium-chain triglyceride application prevents acylcarnitine accumulation in skeletal muscle from very-long-chain acyl-CoA-dehydrogenase-deficient mice.
    Primassin S; Tucci S; Herebian D; Seibt A; Hoffmann L; ter Veld F; Spiekerkoetter U
    J Inherit Metab Dis; 2010 Jun; 33(3):237-46. PubMed ID: 20446112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. No effect of resveratrol on fatty acid oxidation or exercise capacity in patients with fatty acid oxidation disorders: A randomized clinical cross-over trial.
    Storgaard JH; Løkken N; Madsen KL; Voermans NC; Laforêt P; Nadaj-Pakleza A; Tard C; van Hall G; Vissing J; Ørngreen MC
    J Inherit Metab Dis; 2022 May; 45(3):517-528. PubMed ID: 35066899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Management and diagnosis of mitochondrial fatty acid oxidation disorders: focus on very-long-chain acyl-CoA dehydrogenase deficiency.
    Yamada K; Taketani T
    J Hum Genet; 2019 Feb; 64(2):73-85. PubMed ID: 30401918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and pathomechanisms of cardiomyopathy in very long-chain acyl-CoA dehydrogenase deficient (VLCAD(-/-)) mice.
    Tucci S; Flögel U; Hermann S; Sturm M; Schäfers M; Spiekerkoetter U
    Biochim Biophys Acta; 2014 May; 1842(5):677-85. PubMed ID: 24530811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered body composition and energy expenditure but normal glucose tolerance among humans with a long-chain fatty acid oxidation disorder.
    Gillingham MB; Harding CO; Schoeller DA; Matern D; Purnell JQ
    Am J Physiol Endocrinol Metab; 2013 Nov; 305(10):E1299-308. PubMed ID: 24064340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Metabolic Defects in Fatty Acid Oxidation Using Peripheral Blood Mononuclear Cells Loaded with Deuterium-Labeled Fatty Acids.
    Yuasa M; Hata I; Sugihara K; Isozaki Y; Ohshima Y; Hara K; Tajima G; Shigematsu Y
    Dis Markers; 2019; 2019():2984747. PubMed ID: 30881520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.