BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22030122)

  • 1. An improved texture correlation algorithm to measure substrate-cytoskeletal network strain transfer under large compressive strain.
    Zhao R; Simmons CA
    J Biomech; 2012 Jan; 45(1):76-82. PubMed ID: 22030122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chondrocyte deformation induces mitochondrial distortion and heterogeneous intracellular strain fields.
    Knight MM; Bomzon Z; Kimmel E; Sharma AM; Lee DA; Bader DL
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):180-91. PubMed ID: 16520962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate, focal adhesions, and actin filaments: a mechanical unit with a weak spot for mechanosensitive proteins.
    Kirchenbüchler D; Born S; Kirchgessner N; Houben S; Hoffmann B; Merkel R
    J Phys Condens Matter; 2010 May; 22(19):194109. PubMed ID: 21386436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative evaluation of threshold fiber strain that induces reorganization of cytoskeletal actin fiber structure in osteoblastic cells.
    Sato K; Adachi T; Matsuo M; Tomita Y
    J Biomech; 2005 Sep; 38(9):1895-901. PubMed ID: 16023478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of intracellular strain on deformable substrates with texture correlation.
    Gilchrist CL; Witvoet-Braam SW; Guilak F; Setton LA
    J Biomech; 2007; 40(4):786-94. PubMed ID: 16698026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of the active and passive components of the cytoskeletal prestress to stiffening of airway smooth muscle cells.
    Rosenblatt N; Hu S; Suki B; Wang N; Stamenović D
    Ann Biomed Eng; 2007 Feb; 35(2):224-34. PubMed ID: 17151921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces.
    Guolla L; Bertrand M; Haase K; Pelling AE
    J Cell Sci; 2012 Feb; 125(Pt 3):603-13. PubMed ID: 22389400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation.
    Milan JL; Wendling-Mansuy S; Jean M; Chabrand P
    Biomech Model Mechanobiol; 2007 Nov; 6(6):373-90. PubMed ID: 17063370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress fluctuations and motion of cytoskeletal-bound markers.
    Raupach C; Zitterbart DP; Mierke CT; Metzner C; Müller FA; Fabry B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011918. PubMed ID: 17677505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytoskeletal remodelling and slow dynamics in the living cell.
    Bursac P; Lenormand G; Fabry B; Oliver M; Weitz DA; Viasnoff V; Butler JP; Fredberg JJ
    Nat Mater; 2005 Jul; 4(7):557-61. PubMed ID: 15937489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional random network model of the cytoskeleton and its role in mechanotransduction and nucleus deformation.
    Zeng Y; Yip AK; Teo SK; Chiam KH
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):49-59. PubMed ID: 21308391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical compression and hydrostatic pressure induce reversible changes in actin cytoskeletal organisation in chondrocytes in agarose.
    Knight MM; Toyoda T; Lee DA; Bader DL
    J Biomech; 2006; 39(8):1547-51. PubMed ID: 15985265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanochemistry of cytoskeletal force generation.
    Maraldi M; Garikipati K
    Biomech Model Mechanobiol; 2015 Jan; 14(1):59-72. PubMed ID: 24796414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico CDM model sheds light on force transmission in cell from focal adhesions to nucleus.
    Milan JL; Manifacier I; Beussman KM; Han SJ; Sniadecki NJ; About I; Chabrand P
    J Biomech; 2016 Sep; 49(13):2625-2634. PubMed ID: 27298154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focal adhesions as mechanosensors: the two-spring model.
    Schwarz US; Erdmann T; Bischofs IB
    Biosystems; 2006; 83(2-3):225-32. PubMed ID: 16236431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic compression of chondrocytes induces a Rho kinase-dependent reorganization of the actin cytoskeleton.
    Haudenschild DR; D'Lima DD; Lotz MK
    Biorheology; 2008; 45(3-4):219-28. PubMed ID: 18836226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of myoblast deformation in response to cyclic strain - A cytomechanical study.
    Zheng L; Song J; Li Z; Fan Y; Zhao Z; Chen Y; Deng F; Hu Y
    Cell Biol Int; 2008 Jul; 32(7):754-60. PubMed ID: 18400527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional dependence of osteoblastic calcium response to mechanical stimuli.
    Adachi T; Sato K; Tomita Y
    Biomech Model Mechanobiol; 2003 Nov; 2(2):73-82. PubMed ID: 14586810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pericyte actomyosin-mediated contraction at the cell-material interface can modulate the microvascular niche.
    Lee S; Zeiger A; Maloney JM; Kotecki M; Van Vliet KJ; Herman IM
    J Phys Condens Matter; 2010 May; 22(19):194115. PubMed ID: 21386441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Tension on Talin in Focal Adhesions Correlates with F-Actin Alignment at the Nanometer Scale.
    Kumar A; Anderson KL; Swift MF; Hanein D; Volkmann N; Schwartz MA
    Biophys J; 2018 Oct; 115(8):1569-1579. PubMed ID: 30274833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.