These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 22030333)
41. Adaptive strategies of overwintering adults: reproductive diapause and mating behavior in a grasshopper, Stenocatantops splendens (Orthoptera: Catantopidae). Zhu DH; Cui SS; Fan YS; Liu Z Insect Sci; 2013 Apr; 20(2):235-44. PubMed ID: 23955863 [TBL] [Abstract][Full Text] [Related]
42. Induction and inhibition of diapause by the same photoperiod: experimental evidence for a "double circadian oscillator clock". Spieth HR; Xue F; Strau K J Biol Rhythms; 2004 Dec; 19(6):483-92. PubMed ID: 15523110 [TBL] [Abstract][Full Text] [Related]
43. Effects of temperature and photoperiod on the termination of larval diapause in Lucilia sericata (Diptera: Calliphoridae). Tachibana S; Numata H Zoolog Sci; 2004 Feb; 21(2):197-202. PubMed ID: 14993832 [TBL] [Abstract][Full Text] [Related]
44. Influences of daylength and temperature on the period of diapause and its ending process in dormant larvae of burnet moths (Lepidoptera, Zygaenidae). Wipking W Oecologia; 1995 May; 102(2):202-210. PubMed ID: 28306875 [TBL] [Abstract][Full Text] [Related]
45. Diapause in Ornithomya biloba Dufour (Diptera: Hippoboscidae) parasitic on fairy martins in South Australia. Kennedy JA; Smith JR; Smyth M J Parasitol; 1975 Apr; 61(2):369-72. PubMed ID: 1127569 [TBL] [Abstract][Full Text] [Related]
46. Photoperiodic control of diapause in Pseudopidorus fasciata (Lepidoptera: Zygaenidae) based on a qualitative time measurement. Hua A; Yang D; Wu S; Xue F J Insect Physiol; 2005 Nov; 51(11):1261-7. PubMed ID: 16137697 [TBL] [Abstract][Full Text] [Related]
47. Photoperiod-induced diapause in a North Carolina strain of Aedes sollicitans: photosensitivity of fully formed and developing embryos. Parker BM J Am Mosq Control Assoc; 1988 Mar; 4(1):57-63. PubMed ID: 3193099 [TBL] [Abstract][Full Text] [Related]
48. Parental effects: physiological age, mating pattern, and diapause duration on diapause incidence of progeny in the cabbage beetle, Colaphellus bowringi Baly (Coleoptera: Chrysomelidae). Yang D; Lai XT; Sun L; Xue FS J Insect Physiol; 2007 Sep; 53(9):900-8. PubMed ID: 17604050 [TBL] [Abstract][Full Text] [Related]
49. Parental effect of diapause in relation to photoperiod and temperature in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). He HM; Xiao HJ; Xue FS Bull Entomol Res; 2018 Dec; 108(6):773-780. PubMed ID: 29397053 [TBL] [Abstract][Full Text] [Related]
50. Role of neurosecretory cells in the photoperiodic induction of pupal diapause of the tobacco hornworm Manduca sexta. Shiga S; Davis NT; Hildebrand JG J Comp Neurol; 2003 Jun; 462(3):275-85. PubMed ID: 12794732 [TBL] [Abstract][Full Text] [Related]
51. Effects of photoperiod and temperature on testicular function in amphibians. Paniagua R; Fraile B; Sáez FJ Histol Histopathol; 1990 Jul; 5(3):365-78. PubMed ID: 2134391 [TBL] [Abstract][Full Text] [Related]
52. Effects of photoperiod and temperature on gonadal activity and plasma steroid levels in an autumn-spawning bitterling, Acheilognathus rhombea, during different phases of its annual reproductive cycle. Shimizu A; Aida K; Hanyu I Gen Comp Endocrinol; 1994 Jan; 93(1):137-50. PubMed ID: 8138114 [TBL] [Abstract][Full Text] [Related]
53. Diapause induction and termination in Hyphantria cunea (Drury) (Lepidoptera: Arctiinae). Chen C; Wei X; Xiao H; He H; Xia Q; Xue F PLoS One; 2014; 9(5):e98145. PubMed ID: 24878546 [TBL] [Abstract][Full Text] [Related]
54. Time- and temperature-dependent dynamics of prothoracicotropic hormone and ecdysone sensitivity co-regulate pupal diapause in the green-veined white butterfly Pieris napi. Süess P; Dircksen H; Roberts KT; Gotthard K; Nässel DR; Wheat CW; Carlsson MA; Lehmann P Insect Biochem Mol Biol; 2022 Oct; 149():103833. PubMed ID: 36084800 [TBL] [Abstract][Full Text] [Related]
55. Effect of temperature and photoperiod on diapause development in a Douglas fir seed chalcid, Megastigmus spermotrophus. Roux G; Roques A; Menu F Oecologia; 1997 Jul; 111(2):172-177. PubMed ID: 28307991 [TBL] [Abstract][Full Text] [Related]
56. A quantitative model of temperature-dependent diapause progression. von Schmalensee L; Süess P; Roberts KT; Gotthard K; Lehmann P Proc Natl Acad Sci U S A; 2024 Sep; 121(36):e2407057121. PubMed ID: 39196619 [TBL] [Abstract][Full Text] [Related]
57. Effect of temperature on the duration of sensitive period and on the number of photoperiodic cycles required for the induction of reproductive diapause in Drosophila montana. Salminen TS; Hoikkala A J Insect Physiol; 2013 Apr; 59(4):450-7. PubMed ID: 23428942 [TBL] [Abstract][Full Text] [Related]
58. Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. Paolucci S; van de Zande L; Beukeboom LW J Evol Biol; 2013 Apr; 26(4):705-18. PubMed ID: 23496837 [TBL] [Abstract][Full Text] [Related]
59. Photoperiod- and temperature-dependent regulation of pupal beige/black polymorphism in the small copper butterfly, Lycaena phlaeas daimio Seitz. Usui Y; Yamanaka A; Islam AT; Shahjahan R; Endo K Zoolog Sci; 2004 Aug; 21(8):835-9. PubMed ID: 15333996 [TBL] [Abstract][Full Text] [Related]
60. Seasonal adaptations to day length in ecotypes of Diorhabda spp. (Coleoptera: Chrysomelidae) inform selection of agents against saltcedars (Tamarix spp.). Dalin P; Bean DW; Dudley TL; Carney VA; Eberts D; Gardner KT; Hebertson E; Jones EN; Kazmer DJ; Michels GJ; O'Meara SA; Thompson DC Environ Entomol; 2010 Oct; 39(5):1666-75. PubMed ID: 22546466 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]