BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 22030346)

  • 41. Inhibition of neurotransmitter release in the lamprey reticulospinal synapse by antibody-mediated disruption of SNAP-25 function.
    Löw P; Norlin T; Risinger C; Larhammar D; Pieribone VA; Shupliakov O; Brodin L
    Eur J Cell Biol; 1999 Nov; 78(11):787-93. PubMed ID: 10604655
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Active zone assembly and synaptic release.
    Kittel RJ; Hallermann S; Thomsen S; Wichmann C; Sigrist SJ; Heckmann M
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):939-41. PubMed ID: 17052232
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Snares and Munc18 in synaptic vesicle fusion.
    Rizo J; Südhof TC
    Nat Rev Neurosci; 2002 Aug; 3(8):641-53. PubMed ID: 12154365
    [No Abstract]   [Full Text] [Related]  

  • 44. The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones.
    Imig C; Min SW; Krinner S; Arancillo M; Rosenmund C; Südhof TC; Rhee J; Brose N; Cooper BH
    Neuron; 2014 Oct; 84(2):416-31. PubMed ID: 25374362
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release.
    Wadel K; Neher E; Sakaba T
    Neuron; 2007 Feb; 53(4):563-75. PubMed ID: 17296557
    [TBL] [Abstract][Full Text] [Related]  

  • 46. How to maintain active zone integrity during high-frequency transmission.
    Byczkowicz N; Ritzau-Jost A; Delvendahl I; Hallermann S
    Neurosci Res; 2018 Feb; 127():61-69. PubMed ID: 29221908
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphological and functional effects of altered cysteine string protein at the Drosophila larval neuromuscular junction.
    Dawson-Scully K; Lin Y; Imad M; Zhang J; Marin L; Horne JA; Meinertzhagen IA; Karunanithi S; Zinsmaier KE; Atwood HL
    Synapse; 2007 Jan; 61(1):1-16. PubMed ID: 17068777
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activity-related redistribution of presynaptic proteins at the active zone.
    Tao-Cheng JH
    Neuroscience; 2006 Sep; 141(3):1217-24. PubMed ID: 16757121
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular mechanisms of presynaptic differentiation.
    Jin Y; Garner CC
    Annu Rev Cell Dev Biol; 2008; 24():237-62. PubMed ID: 18588488
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamics of presynaptic endosomes produced during transmitter release.
    Kadota T; Mizote M; Kadota K
    J Electron Microsc (Tokyo); 1994 Apr; 43(2):62-71. PubMed ID: 8077873
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of neuromuscular abnormalities in neurotrophin-3-deficient mice.
    Sheard PW; Bewick GS; Woolley AG; Shaw J; Fisher L; Fong SW; Duxson MJ
    Eur J Neurosci; 2010 Jan; 31(1):29-41. PubMed ID: 20092553
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of synaptic vesicle docking by different classes of macromolecules in active zone material.
    Szule JA; Harlow ML; Jung JH; De-Miguel FF; Marshall RM; McMahan UJ
    PLoS One; 2012; 7(3):e33333. PubMed ID: 22438915
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fife organizes synaptic vesicles and calcium channels for high-probability neurotransmitter release.
    Bruckner JJ; Zhan H; Gratz SJ; Rao M; Ukken F; Zilberg G; O'Connor-Giles KM
    J Cell Biol; 2017 Jan; 216(1):231-246. PubMed ID: 27998991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Presynaptically silent synapses: dormancy and awakening of presynaptic vesicle release.
    Crawford DC; Mennerick S
    Neuroscientist; 2012 Jun; 18(3):216-23. PubMed ID: 21908849
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular mechanisms of presynaptic membrane retrieval and synaptic vesicle reformation.
    Kononenko NL; Haucke V
    Neuron; 2015 Feb; 85(3):484-96. PubMed ID: 25654254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Presynaptic function in health and disease.
    Waites CL; Garner CC
    Trends Neurosci; 2011 Jun; 34(6):326-37. PubMed ID: 21596448
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The presynaptic scaffolding protein Piccolo organizes the readily releasable pool at the calyx of Held.
    Parthier D; Kuner T; Körber C
    J Physiol; 2018 Apr; 596(8):1485-1499. PubMed ID: 29194628
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assembly of active zone precursor vesicles: obligatory trafficking of presynaptic cytomatrix proteins Bassoon and Piccolo via a trans-Golgi compartment.
    Dresbach T; Torres V; Wittenmayer N; Altrock WD; Zamorano P; Zuschratter W; Nawrotzki R; Ziv NE; Garner CC; Gundelfinger ED
    J Biol Chem; 2006 Mar; 281(9):6038-47. PubMed ID: 16373352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The presynaptic dense projection of the Caenorhabditis elegans cholinergic neuromuscular junction localizes synaptic vesicles at the active zone through SYD-2/liprin and UNC-10/RIM-dependent interactions.
    Stigloher C; Zhan H; Zhen M; Richmond J; Bessereau JL
    J Neurosci; 2011 Mar; 31(12):4388-96. PubMed ID: 21430140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Age-dependent alterations in the presynaptic active zone in a Drosophila model of Alzheimer's disease.
    Huang JK; Ma PL; Ji SY; Zhao XL; Tan JX; Sun XJ; Huang FD
    Neurobiol Dis; 2013 Mar; 51():161-7. PubMed ID: 23149068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.