BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22030459)

  • 1. Pathogenesis of varicose veins.
    Oklu R; Habito R; Mayr M; Deipolyi AR; Albadawi H; Hesketh R; Walker TG; Linskey KR; Long CA; Wicky S; Stoughton J; Watkins MT
    J Vasc Interv Radiol; 2012 Jan; 23(1):33-9; quiz 40. PubMed ID: 22030459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current advances in the pathogenesis of varicose veins.
    Naoum JJ; Hunter GC; Woodside KJ; Chen C
    J Surg Res; 2007 Aug; 141(2):311-6. PubMed ID: 17070551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenesis of primary varicose veins.
    Lim CS; Davies AH
    Br J Surg; 2009 Nov; 96(11):1231-42. PubMed ID: 19847861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of transforming growth factor-beta1 correlates with increased synthesis of nitric oxide synthase in varicose veins.
    Jacob T; Hingorani A; Ascher E
    J Vasc Surg; 2005 Mar; 41(3):523-30. PubMed ID: 15838489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of differentially expressed genes in human varicose veins: involvement of matrix gla protein in extracellular matrix remodeling.
    Cario-Toumaniantz C; Boularan C; Schurgers LJ; Heymann MF; Le Cunff M; Léger J; Loirand G; Pacaud P
    J Vasc Res; 2007; 44(6):444-59. PubMed ID: 17643059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated c-fos expression is correlated with phenotypic switching of human vascular smooth muscle cells derived from lower limb venous varicosities.
    Guo Z; Luo C; Zhu T; Li L; Zhang W
    J Vasc Surg Venous Lymphat Disord; 2021 Jan; 9(1):242-251. PubMed ID: 32360331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenesis of varicose veins - lessons from biomechanics.
    Pfisterer L; König G; Hecker M; Korff T
    Vasa; 2014 Mar; 43(2):88-99. PubMed ID: 24627315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Primary varicose veins--changes in the venous wall and elastic behavior].
    Kirsch D; Wahl W; Böttger T; Junginger T
    Chirurg; 2000 Mar; 71(3):300-5; discussion 305-6. PubMed ID: 10789047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro differences between smooth muscle cells derived from varicose veins and normal veins.
    Xiao Y; Huang Z; Yin H; Lin Y; Wang S
    J Vasc Surg; 2009 Nov; 50(5):1149-54. PubMed ID: 19703751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of transforming growth factor-beta signaling pathway in the wall of normal and varicose veins.
    Kowalewski R; Malkowski A; Sobolewski K; Gacko M
    Pathobiology; 2010; 77(1):1-6. PubMed ID: 20185961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of collagen is dysregulated in cultured fibroblasts derived from skin of subjects with varicose veins as it is in venous smooth muscle cells.
    Sansilvestri-Morel P; Rupin A; Jaisson S; Fabiani JN; Verbeuren TJ; Vanhoutte PM
    Circulation; 2002 Jul; 106(4):479-83. PubMed ID: 12135949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal deposition of extracellular matrix proteins by cultured smooth muscle cells from human varicose veins.
    Sansilvestri-Morel P; Nonotte I; Fournet-Bourguignon MP; Rupin A; Fabiani JN; Verbeuren TJ; Vanhoutte PM
    J Vasc Res; 1998; 35(2):115-23. PubMed ID: 9588875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TGF-beta1 upregulation in the aging varicose vein.
    Pascual G; Mendieta C; García-Honduvilla N; Corrales C; Bellón JM; Buján J
    J Vasc Res; 2007; 44(3):192-201. PubMed ID: 17337905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomolecular mechanisms in varicose veins development.
    Segiet OA; Brzozowa-Zasada M; Piecuch A; Dudek D; Reichman-Warmusz E; Wojnicz R
    Ann Vasc Surg; 2015 Feb; 29(2):377-84. PubMed ID: 25449990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Lower extremity varicose veins in childhood and at a young age: Mechanism of development and specific features].
    Studennikova VV; Severgina LO; Dzyundzya AN; Korovin IA
    Arkh Patol; 2017; 79(4):56-60. PubMed ID: 28792000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IQGAP1 promotes the phenotypic switch of vascular smooth muscle by myocardin pathway: a potential target for varicose vein.
    Huang X; Jin Y; Zhou D; Xu G; Huang J; Shen L
    Int J Clin Exp Pathol; 2014; 7(10):6475-85. PubMed ID: 25400725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of wall structure and composition of varicose veins with reference to collagen, elastin and smooth muscle content.
    Travers JP; Brookes CE; Evans J; Baker DM; Kent C; Makin GS; Mayhew TM
    Eur J Vasc Endovasc Surg; 1996 Feb; 11(2):230-7. PubMed ID: 8616659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmentation of miR-202 in varicose veins modulates phenotypic transition of vascular smooth muscle cells by targeting proliferator-activated receptor-γ coactivator-1α.
    Huang X; Liu Z; Shen L; Jin Y; Xu G; Zhang Z; Fang C; Guan W; Liu C
    J Cell Biochem; 2019 Jun; 120(6):10031-10042. PubMed ID: 30556158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connective tissue accumulation in the muscle layer in normal and varicose saphenous veins.
    Porto LC; da Silveira PR; de Carvalho JJ; Panico MD
    Angiology; 1995 Mar; 46(3):243-9. PubMed ID: 7879965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some thoughts on the aetiology of varicose veins.
    Rose SS; Ahmed A
    J Cardiovasc Surg (Torino); 1986; 27(5):534-43. PubMed ID: 3760014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.