These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 2203065)
1. The subcellular compartmentation of creatine kinase isozymes as a precondition for a proposed phosphoryl-creatine circuit. Wallimann T; Eppenberger HM Prog Clin Biol Res; 1990; 344():877-89. PubMed ID: 2203065 [TBL] [Abstract][Full Text] [Related]
2. Subcellular compartmentation of creatine kinase isoenzymes, regulation of CK and octameric structure of mitochondrial CK: important aspects of the phosphoryl-creatine circuit. Wallimann T; Schnyder T; Schlegel J; Wyss M; Wegmann G; Rossi AM; Hemmer W; Eppenberger HM; Quest AF Prog Clin Biol Res; 1989; 315():159-76. PubMed ID: 2678153 [No Abstract] [Full Text] [Related]
3. Isozymes of creatine kinase in mammalian cell cultures. Van Brussel E; Yang JJ; Seraydarian MW J Cell Physiol; 1983 Aug; 116(2):221-6. PubMed ID: 6863402 [TBL] [Abstract][Full Text] [Related]
4. Creatine kinase in non-muscle tissues and cells. Wallimann T; Hemmer W Mol Cell Biochem; 1994; 133-134():193-220. PubMed ID: 7808454 [TBL] [Abstract][Full Text] [Related]
5. Subcellular localization of creatine kinase in Torpedo electrocytes: association with acetylcholine receptor-rich membranes. Wallimann T; Walzthöny D; Wegmann G; Moser H; Eppenberger HM; Barrantes FJ J Cell Biol; 1985 Apr; 100(4):1063-72. PubMed ID: 3884630 [TBL] [Abstract][Full Text] [Related]
6. Functional studies with the octameric and dimeric form of mitochondrial creatine kinase. Differential pH-dependent association of the two oligomeric forms with the inner mitochondrial membrane. Schlegel J; Wyss M; Eppenberger HM; Wallimann T J Biol Chem; 1990 Jun; 265(16):9221-7. PubMed ID: 2345172 [TBL] [Abstract][Full Text] [Related]
7. [Creatine kinase isoenzymes--characterization and functions in cell]. Grzyb K; Skorkowski EF Postepy Biochem; 2008; 54(3):274-83. PubMed ID: 19112826 [TBL] [Abstract][Full Text] [Related]
8. [Importance of creatine kinase psychiatry--truths and myths]. Warchala A; Kucia K; Małecki A Wiad Lek; 2006; 59(3-4):255-60. PubMed ID: 16813275 [TBL] [Abstract][Full Text] [Related]
9. Ion transport in gills of the euryhaline fish Gillichthys mirabilis is facilitated by a phosphocreatine circuit. Kültz D; Somero GN Am J Physiol; 1995 Apr; 268(4 Pt 2):R1003-12. PubMed ID: 7733382 [TBL] [Abstract][Full Text] [Related]
10. The creatine kinase system and pleiotropic effects of creatine. Wallimann T; Tokarska-Schlattner M; Schlattner U Amino Acids; 2011 May; 40(5):1271-96. PubMed ID: 21448658 [TBL] [Abstract][Full Text] [Related]
11. The creatine kinase reaction: a simple reaction with functional complexity. Sahlin K; Harris RC Amino Acids; 2011 May; 40(5):1363-7. PubMed ID: 21394603 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of brain-type creatine kinase at 1.41 A resolution. Eder M; Schlattner U; Becker A; Wallimann T; Kabsch W; Fritz-Wolf K Protein Sci; 1999 Nov; 8(11):2258-69. PubMed ID: 10595529 [TBL] [Abstract][Full Text] [Related]
13. Glycolysis supports calcium uptake by the sarcoplasmic reticulum in skinned ventricular fibres of mice deficient in mitochondrial and cytosolic creatine kinase. Boehm E; Ventura-Clapier R; Mateo P; Lechène P; Veksler V J Mol Cell Cardiol; 2000 Jun; 32(6):891-902. PubMed ID: 10888244 [TBL] [Abstract][Full Text] [Related]
14. Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. Wallimann T; Schlösser T; Eppenberger HM J Biol Chem; 1984 Apr; 259(8):5238-46. PubMed ID: 6143755 [TBL] [Abstract][Full Text] [Related]
15. Energy transport and cell polarity: relationship of phosphagen kinase activity to sperm function. Tombes RM; Shapiro BM J Exp Zool; 1989 Jul; 251(1):82-90. PubMed ID: 2549169 [TBL] [Abstract][Full Text] [Related]
16. Energy related metabolic alterations in diaphragm muscle resulting from acute methomyl toxicity. Gupta RC; Goad JT; Kadel WL Neurotoxicology; 1994; 15(2):321-30. PubMed ID: 7991221 [TBL] [Abstract][Full Text] [Related]
17. The use of phosphocreatine plus ADP as energy source for motility of membrane-deprived trout spermatozoa. Saudrais C; Fierville F; Loir M; Le Rumeur E; Cibert C; Cosson J Cell Motil Cytoskeleton; 1998; 41(2):91-106. PubMed ID: 9786085 [TBL] [Abstract][Full Text] [Related]
18. The role of phosphocreatine and ATP in contraction of normal and ischemic heart. Kupriyanov VV; Lakomkin VL; Steinschneider AYa ; Novikova NA; Severina MYu ; Kapelko VI; Saks VA Biomed Biochim Acta; 1987; 46(8-9):S493-8. PubMed ID: 3435507 [TBL] [Abstract][Full Text] [Related]
19. Native mitochondrial creatine kinase forms octameric structures. II. Characterization of dimers and octamers by ultracentrifugation, direct mass measurements by scanning transmission electron microscopy, and image analysis of single mitochondrial creatine kinase octamers. Schnyder T; Engel A; Lustig A; Wallimann T J Biol Chem; 1988 Nov; 263(32):16954-62. PubMed ID: 3182824 [TBL] [Abstract][Full Text] [Related]
20. [ATP-phosphocreatine metabolism catalyzed by creatine kinase. Comparison of saturation transfer (NMR) and isotope labeling technics]. Kupriianov VV; Liulina NV; Shteĭnshneĭder AIa; Zueva MIu; Saks VA Bioorg Khim; 1987 Mar; 13(3):300-8. PubMed ID: 3593427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]