These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2203065)

  • 21. Functional coupling of creatine kinases in muscles: species and tissue specificity.
    Ventura-Clapier R; Kuznetsov A; Veksler V; Boehm E; Anflous K
    Mol Cell Biochem; 1998 Jul; 184(1-2):231-47. PubMed ID: 9746324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphorylated guanidinoacetate partly compensates for the lack of phosphocreatine in skeletal muscle of mice lacking guanidinoacetate methyltransferase.
    Kan HE; Renema WK; Isbrandt D; Heerschap A
    J Physiol; 2004 Oct; 560(Pt 1):219-29. PubMed ID: 15284341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cerebral creatine kinase deficiency influences metabolite levels and morphology in the mouse brain: a quantitative in vivo 1H and 31P magnetic resonance study.
    in 't Zandt HJ; Renema WK; Streijger F; Jost C; Klomp DW; Oerlemans F; Van der Zee CE; Wieringa B; Heerschap A
    J Neurochem; 2004 Sep; 90(6):1321-30. PubMed ID: 15341516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology.
    Wallimann T; Dolder M; Schlattner U; Eder M; Hornemann T; O'Gorman E; Rück A; Brdiczka D
    Biofactors; 1998; 8(3-4):229-34. PubMed ID: 9914824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent.
    Kekelidze T; Khait I; Togliatti A; Benzecry JM; Wieringa B; Holtzman D
    J Neurosci Res; 2001 Dec; 66(5):866-72. PubMed ID: 11746413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brain-type creatine kinase in photoreceptor cell outer segments: role of a phosphocreatine circuit in outer segment energy metabolism and phototransduction.
    Hemmer W; Riesinger I; Wallimann T; Eppenberger HM; Quest AF
    J Cell Sci; 1993 Oct; 106 ( Pt 2)():671-83. PubMed ID: 8282772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular and subcellular compartmentation of creatine kinase in brain.
    Manos P; Bryan GK
    Dev Neurosci; 1993; 15(3-5):271-9. PubMed ID: 7805579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites.
    Schlattner U; Klaus A; Ramirez Rios S; Guzun R; Kay L; Tokarska-Schlattner M
    Amino Acids; 2016 Aug; 48(8):1751-74. PubMed ID: 27318991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells.
    Wallimann T; Wegmann G; Moser H; Huber R; Eppenberger HM
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3816-9. PubMed ID: 3520556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of ubiquitous mitochondrial creatine kinase expression in HeLa cells by an antisense oligodeoxynucleotide.
    Enjolras N; Godinot C
    Mol Cell Biochem; 1997 Feb; 167(1-2):113-25. PubMed ID: 9059988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A simple analysis of the "phosphocreatine shuttle".
    Meyer RA; Sweeney HL; Kushmerick MJ
    Am J Physiol; 1984 May; 246(5 Pt 1):C365-77. PubMed ID: 6372517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzyme termini of a phosphocreatine shuttle. Purification and characterization of two creatine kinase isozymes from sea urchin sperm.
    Tombes RM; Shapiro BM
    J Biol Chem; 1987 Nov; 262(33):16011-9. PubMed ID: 3680241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Creatine kinase and enolase: intracellular enzymes serving as markers of central nervous system damage in neuropsychiatric disorders.
    el-Mallakh RS; Egan M; Wyatt RJ
    Psychiatry; 1992 Nov; 55(4):392-402. PubMed ID: 1470677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial creatine kinase from cardiac muscle and brain are two distinct isoenzymes but both form octameric molecules.
    Schlegel J; Wyss M; Schürch U; Schnyder T; Quest A; Wegmann G; Eppenberger HM; Wallimann T
    J Biol Chem; 1988 Nov; 263(32):16963-9. PubMed ID: 3182825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and functional adaptations of striated muscles to CK deficiency.
    Ventura-Clapier R; Kaasik A; Veksler V
    Mol Cell Biochem; 2004; 256-257(1-2):29-41. PubMed ID: 14977168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Creatine transporters: a reappraisal.
    Speer O; Neukomm LJ; Murphy RM; Zanolla E; Schlattner U; Henry H; Snow RJ; Wallimann T
    Mol Cell Biochem; 2004; 256-257(1-2):407-24. PubMed ID: 14977199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Architectural and functional remodeling of cardiac and skeletal muscle cells in mice lacking specific isoenzymes of creatine kinase.
    Tylková L
    Gen Physiol Biophys; 2009 Sep; 28(3):219-24. PubMed ID: 20037186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis.
    Wallimann T; Wyss M; Brdiczka D; Nicolay K; Eppenberger HM
    Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):21-40. PubMed ID: 1731757
    [No Abstract]   [Full Text] [Related]  

  • 39. Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies.
    Steeghs K; Benders A; Oerlemans F; de Haan A; Heerschap A; Ruitenbeek W; Jost C; van Deursen J; Perryman B; Pette D; Brückwilder M; Koudijs J; Jap P; Veerkamp J; Wieringa B
    Cell; 1997 Apr; 89(1):93-103. PubMed ID: 9094718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of cytosolic and mitochondrial creatine kinase by siRNA in HaCaT- and HeLaS3-cells affects cell viability and mitochondrial morphology.
    Lenz H; Schmidt M; Welge V; Kueper T; Schlattner U; Wallimann T; Elsässer HP; Wittern KP; Wenck H; Staeb F; Blatt T
    Mol Cell Biochem; 2007 Dec; 306(1-2):153-62. PubMed ID: 17660950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.