These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 22030694)

  • 21. Microfluidic sensing devices employing in situ-formed liquid crystal thin film for detection of biochemical interactions.
    Liu Y; Cheng D; Lin IH; Abbott NL; Jiang H
    Lab Chip; 2012 Oct; 12(19):3746-53. PubMed ID: 22842797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane).
    Weibel DB; Siegel AC; Lee A; George AH; Whitesides GM
    Lab Chip; 2007 Dec; 7(12):1832-6. PubMed ID: 18030408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cholesteric liquid crystal devices with nanoparticle aggregation.
    Jeng SC; Hwang SJ; Hung YH; Chen SC
    Opt Express; 2010 Oct; 18(21):22572-7. PubMed ID: 20941154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/rhodamine B.
    Samy R; Glawdel T; Ren CL
    Anal Chem; 2008 Jan; 80(2):369-75. PubMed ID: 18081260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures.
    Polinkovsky M; Gutierrez E; Levchenko A; Groisman A
    Lab Chip; 2009 Apr; 9(8):1073-84. PubMed ID: 19350089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Color-temperature tunable white reflector using bichiral liquid crystal films.
    Ha NY; Jeong SM; Nishimura S; Takezoe H
    Opt Express; 2010 Dec; 18(25):26339-44. PubMed ID: 21164984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device.
    Zeng HL; Li H; Wang X; Lin JM
    J Capill Electrophor Microchip Technol; 2007; 10(1-2):19-24. PubMed ID: 17685238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theory of polymer-dispersed cholesteric liquid crystals.
    Matsuyama A
    J Chem Phys; 2013 Nov; 139(17):174906. PubMed ID: 24206333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low density cell culture of locust neurons in closed-channel microfluidic devices.
    Göbbels K; Thiebes AL; van Ooyen A; Schnakenberg U; Bräunig P
    J Insect Physiol; 2010 Aug; 56(8):1003-9. PubMed ID: 20566412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Irreversible visual sensing of humidity using a cholesteric liquid crystal.
    Saha A; Tanaka Y; Han Y; Bastiaansen CM; Broer DJ; Sijbesma RP
    Chem Commun (Camb); 2012 May; 48(38):4579-81. PubMed ID: 22460036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions.
    Chen YA; King AD; Shih HC; Peng CC; Wu CY; Liao WH; Tung YC
    Lab Chip; 2011 Nov; 11(21):3626-33. PubMed ID: 21915399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Second-generation maskless photolithography device for surface micropatterning and microfluidic channel fabrication.
    Itoga K; Kobayashi J; Tsuda Y; Yamato M; Okano T
    Anal Chem; 2008 Feb; 80(4):1323-7. PubMed ID: 18211096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum dot FRET-based probes in thin films grown in microfluidic channels.
    Crivat G; Da Silva SM; Reyes DR; Locascio LE; Gaitan M; Rosenzweig N; Rosenzweig Z
    J Am Chem Soc; 2010 Feb; 132(5):1460-1. PubMed ID: 20073459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles.
    Kang E; Shin SJ; Lee KH; Lee SH
    Lab Chip; 2010 Jul; 10(14):1856-61. PubMed ID: 20454720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.
    Yu L; Li CM; Liu Y; Gao J; Wang W; Gan Y
    Lab Chip; 2009 May; 9(9):1243-7. PubMed ID: 19370243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.