These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 22030712)
1. Distinct neurochemical adaptations within the nucleus accumbens produced by a history of self-administered vs non-contingently administered intravenous methamphetamine. Lominac KD; Sacramento AD; Szumlinski KK; Kippin TE Neuropsychopharmacology; 2012 Feb; 37(3):707-22. PubMed ID: 22030712 [TBL] [Abstract][Full Text] [Related]
2. Dysregulation of dopamine and glutamate release in the prefrontal cortex and nucleus accumbens following methamphetamine self-administration and during reinstatement in rats. Parsegian A; See RE Neuropsychopharmacology; 2014 Mar; 39(4):811-22. PubMed ID: 23995583 [TBL] [Abstract][Full Text] [Related]
4. Extended-access, but not limited-access, methamphetamine self-administration induces behavioral and nucleus accumbens dopamine response changes in rats. Le Cozannet R; Markou A; Kuczenski R Eur J Neurosci; 2013 Nov; 38(10):3487-95. PubMed ID: 24112125 [TBL] [Abstract][Full Text] [Related]
5. Nucleus accumbens hyperpolarization-activated cyclic nucleotide-gated channels modulate methamphetamine self-administration in rats. Cao DN; Song R; Zhang SZ; Wu N; Li J Psychopharmacology (Berl); 2016 Aug; 233(15-16):3017-29. PubMed ID: 27329413 [TBL] [Abstract][Full Text] [Related]
6. Methamphetamine Activates Toll-Like Receptor 4 to Induce Central Immune Signaling within the Ventral Tegmental Area and Contributes to Extracellular Dopamine Increase in the Nucleus Accumbens Shell. Wang X; Northcutt AL; Cochran TA; Zhang X; Fabisiak TJ; Haas ME; Amat J; Li H; Rice KC; Maier SF; Bachtell RK; Hutchinson MR; Watkins LR ACS Chem Neurosci; 2019 Aug; 10(8):3622-3634. PubMed ID: 31282647 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of GSDMD-dependent pyroptosis decreased methamphetamine self-administration in rats. Shen Y; Gong X; Qian L; Ruan Y; Lin S; Yu Z; Si Z; Wei W; Liu Y Brain Behav Immun; 2024 Aug; 120():167-180. PubMed ID: 38834156 [TBL] [Abstract][Full Text] [Related]
8. Effects of subchronic methamphetamine exposure on basal dopamine and stress-induced dopamine release in the nucleus accumbens shell of rats. Broom SL; Yamamoto BK Psychopharmacology (Berl); 2005 Sep; 181(3):467-76. PubMed ID: 15986185 [TBL] [Abstract][Full Text] [Related]
9. Inhibitory effects of Shati/Nat8l overexpression in the medial prefrontal cortex on methamphetamine-induced conditioned place preference in mice. Haddar M; Uno K; Azuma K; Muramatsu SI; Nitta A Addict Biol; 2020 May; 25(3):e12749. PubMed ID: 30950164 [TBL] [Abstract][Full Text] [Related]
10. Comparison of cocaine- and methamphetamine-evoked dopamine and glutamate overflow in somatodendritic and terminal field regions of the rat brain during acute, chronic, and early withdrawal conditions. Zhang Y; Loonam TM; Noailles PA; Angulo JA Ann N Y Acad Sci; 2001 Jun; 937():93-120. PubMed ID: 11458542 [TBL] [Abstract][Full Text] [Related]
11. Sex Differences in Escalated Methamphetamine Self-Administration and Altered Gene Expression Associated With Incubation of Methamphetamine Seeking. Daiwile AP; Jayanthi S; Ladenheim B; McCoy MT; Brannock C; Schroeder J; Cadet JL Int J Neuropsychopharmacol; 2019 Nov; 22(11):710-723. PubMed ID: 31562746 [TBL] [Abstract][Full Text] [Related]
12. Neurochemical and behavioral differences between d-methamphetamine and d-amphetamine in rats. Shoblock JR; Sullivan EB; Maisonneuve IM; Glick SD Psychopharmacology (Berl); 2003 Feb; 165(4):359-69. PubMed ID: 12491026 [TBL] [Abstract][Full Text] [Related]
13. Valproate blocks high-dose methamphetamine-induced behavioral cross-sensitization to locomotion-inducing effect of dizocilpine (MK-801), but not methamphetamine. Ito K; Abekawa T; Koyama T Psychopharmacology (Berl); 2006 Jul; 186(4):525-33. PubMed ID: 16758239 [TBL] [Abstract][Full Text] [Related]
14. MicroRNA expression signature of methamphetamine use and addiction in the rat nucleus accumbens. Sim MS; Soga T; Pandy V; Wu YS; Parhar IS; Mohamed Z Metab Brain Dis; 2017 Dec; 32(6):1767-1783. PubMed ID: 28681200 [TBL] [Abstract][Full Text] [Related]
15. Chronic Methamphetamine Self-Administration Dysregulates Oxytocin Plasma Levels and Oxytocin Receptor Fibre Density in the Nucleus Accumbens Core and Subthalamic Nucleus of the Rat. Baracz SJ; Parker LM; Suraev AS; Everett NA; Goodchild AK; McGregor IS; Cornish JL J Neuroendocrinol; 2016 Apr; 28(4):. PubMed ID: 26563756 [TBL] [Abstract][Full Text] [Related]
16. Oxytocin in the nucleus accumbens core reduces reinstatement of methamphetamine-seeking behaviour in rats. Baracz SJ; Everett NA; McGregor IS; Cornish JL Addict Biol; 2016 Mar; 21(2):316-25. PubMed ID: 25399704 [TBL] [Abstract][Full Text] [Related]
17. The role of reactive oxygen species in methamphetamine self-administration and dopamine release in the nucleus accumbens. Jang EY; Yang CH; Hedges DM; Kim SP; Lee JY; Ekins TG; Garcia BT; Kim HY; Nelson AC; Kim NJ; Steffensen SC Addict Biol; 2017 Sep; 22(5):1304-1315. PubMed ID: 27417190 [TBL] [Abstract][Full Text] [Related]
18. Deletion of VGLUT2 in midbrain dopamine neurons attenuates dopamine and glutamate responses to methamphetamine in mice. Shen H; Chen K; Marino RAM; McDevitt RA; Xi ZX Pharmacol Biochem Behav; 2021 Mar; 202():173104. PubMed ID: 33444596 [TBL] [Abstract][Full Text] [Related]