BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 22030805)

  • 1. Microfluidic Wheatstone bridge for rapid sample analysis.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 Dec; 11(24):4181-6. PubMed ID: 22030805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling flow in microfluidic channels with a manually actuated pin valve.
    Brett ME; Zhao S; Stoia JL; Eddington DT
    Biomed Microdevices; 2011 Aug; 13(4):633-9. PubMed ID: 21472409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection.
    Wang CH; Lee GB
    Biosens Bioelectron; 2005 Sep; 21(3):419-25. PubMed ID: 16076430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic-based hydrodynamic trap: design and implementation.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A membrane-based, high-efficiency, microfluidic debubbler.
    Liu C; Thompson JA; Bau HH
    Lab Chip; 2011 May; 11(9):1688-93. PubMed ID: 21445396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrally resolved flow imaging of fluids inside a microfluidic chip with ultrahigh time resolution.
    Harel E; Pines A
    J Magn Reson; 2008 Aug; 193(2):199-206. PubMed ID: 18538599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weak solvent based chip lamination and characterization of on-chip valve and pump.
    Zhou P; Young L; Chen Z
    Biomed Microdevices; 2010 Oct; 12(5):821-32. PubMed ID: 20526680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-activated microfluidic rotary devices for pumping and mixing.
    Tseng HY; Wang CH; Lin WY; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):545-54. PubMed ID: 17505888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated electric valve for electrokinetic separation in a networked microfluidic chip.
    Cui H; Huang Z; Dutta P; Ivory CF
    Anal Chem; 2007 Feb; 79(4):1456-65. PubMed ID: 17297944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic valves with integrated structured elastomeric membranes for reversible fluidic entrapment and in situ channel functionalization.
    Vanapalli SA; Wijnperle D; van den Berg A; Mugele F; Duits MH
    Lab Chip; 2009 May; 9(10):1461-7. PubMed ID: 19417915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip high-speed sorting of micron-sized particles for high-throughput analysis.
    Holmes D; Sandison ME; Green NG; Morgan H
    IEE Proc Nanobiotechnol; 2005 Aug; 152(4):129-35. PubMed ID: 16441169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microspheres as resistive elements in a check valve for low pressure and low flow rate conditions.
    Ou K; Jackson J; Burt H; Chiao M
    Lab Chip; 2012 Nov; 12(21):4372-80. PubMed ID: 22918469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated chip-based device for simple and fast nucleic acid amplification.
    Münchow G; Dadic D; Doffing F; Hardt S; Drese KS
    Expert Rev Mol Diagn; 2005 Jul; 5(4):613-20. PubMed ID: 16013978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.