These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22030854)

  • 61. Spatial variation in epaxial muscle activity during prey strike in largemouth bass (Micropterus salmoides).
    Thys T
    J Exp Biol; 1997 Dec; 200 (Pt 23)():3021-31. PubMed ID: 9359891
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Liver proteome response of largemouth bass (Micropterus salmoides) exposed to several environmental contaminants: potential insights into biomarker development.
    Sanchez BC; Ralston-Hooper KJ; Kowalski KA; Dorota Inerowicz H; Adamec J; Sepúlveda MS
    Aquat Toxicol; 2009 Oct; 95(1):52-9. PubMed ID: 19717195
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bluegill sunfish use high power outputs from axial muscles to generate powerful suction-feeding strikes.
    Camp AL; Roberts TJ; Brainerd EL
    J Exp Biol; 2018 Jun; 221(Pt 11):. PubMed ID: 29871983
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Occurrence of acanthocephalans in largemouth bass and smallmouth bass (Centrarchidae) from Gull Lake, Michigan.
    Muzzall PM; Gillilland MG
    J Parasitol; 2004 Jun; 90(3):663-4. PubMed ID: 15270122
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hybridization among divergent stocks of largemouth bass (Micropterus salmoides) results in altered cardiovascular performance: the influence of genetic and geographic distance.
    Cooke SJ; Philipp DP
    Physiol Biochem Zool; 2006; 79(2):400-10. PubMed ID: 16555198
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The influence of brood loss on nest abandonment decisions in largemouth bass Micropterus salmoides.
    Zuckerman ZC; Philipp DP; Suski CD
    J Fish Biol; 2014 Jun; 84(6):1863-75. PubMed ID: 24890406
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nitrogen excretion and expression of carbamoyl-phosphate synthetase III activity and mRNA in extrahepatic tissues of largemouth bass (Micropterus salmoides).
    Kong H; Edberg DD; Korte JJ; Salo WL; Wright PA; Anderson PM
    Arch Biochem Biophys; 1998 Feb; 350(2):157-68. PubMed ID: 9473289
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The inhibition of brain acetylcholinesterase activity of juvenile largemouth bass Micropterus salmoides by sublethal concentrations of diazinon.
    Pan G; Dutta HM
    Environ Res; 1998 Nov; 79(2):133-7. PubMed ID: 9841812
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Density-dependent changes in individual foraging specialization of largemouth bass.
    Schindler DE; Hodgson JR; Kitchell JF
    Oecologia; 1997 May; 110(4):592-600. PubMed ID: 28307255
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ecological studies of helminth parasites of the largemouth bass, Micropterus salmoides, from Lake Naivasha and the Oloidien Bay, Kenya.
    Aloo PA
    Onderstepoort J Vet Res; 1999 Jun; 66(2):73-9. PubMed ID: 10486823
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of beta-naphthoflavone on hepatic biotransformation and glutathione biosynthesis in largemouth bass (Micropterus salmoides).
    Hughes EM; Gallagher EP
    Mar Environ Res; 2004; 58(2-5):675-9. PubMed ID: 15178098
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Waterborne and dietary hexavalent chromium exposure causes DNA-protein crosslink (DPX) formation in erythrocytes of largemouth bass (Micropterus salmoides).
    Kuykendall JR; Miller KL; Mellinger KN; Cain AV
    Aquat Toxicol; 2006 Jun; 78(1):27-31. PubMed ID: 16672167
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Population biology of the largemouth bass, Micropterus salmoides from Goe-San Lake, Korea.
    Zhang MM; Oh CW; Lee WO; Na JH
    J Environ Biol; 2013 Jul; 34(4):747-54. PubMed ID: 24640252
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Reevaluating Musculoskeletal Linkages in Suction-Feeding Fishes with X-Ray Reconstruction of Moving Morphology (XROMM).
    Camp AL; Brainerd EL
    Integr Comp Biol; 2015 Jul; 55(1):36-47. PubMed ID: 25972567
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of local adaptation and interstock hybridization on the cardiovascular performance of largemouth bass Micropterus salmoides.
    Cooke SJ; Philipp DP
    J Exp Biol; 2005 Jun; 208(Pt 11):2055-62. PubMed ID: 15914649
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In vivo muscle function vs speed. I. Muscle strain in relation to length change of the muscle-tendon unit.
    Hoyt DF; Wickler SJ; Biewener AA; Cogger EA; De La Paz KL
    J Exp Biol; 2005 Mar; 208(Pt 6):1175-90. PubMed ID: 15767316
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Scaling of suction-feeding kinematics and dynamics in the African catfish, Clarias gariepinus.
    Van Wassenbergh S; Aerts P; Herrel A
    J Exp Biol; 2005 Jun; 208(Pt 11):2103-14. PubMed ID: 15914654
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Lateralized behavior in the attacks of largemouth bass on Rhinogobius gobies corresponding to their morphological antisymmetry.
    Yasugi M; Hori M
    J Exp Biol; 2012 Jul; 215(Pt 14):2390-8. PubMed ID: 22723477
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Intermittent propulsion in largemouth bass,
    Coughlin DJ; Chrostek JD; Ellerby DJ
    Biol Lett; 2022 May; 18(5):20210658. PubMed ID: 35506239
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Suction feeding mechanics, performance, and diversity in fishes.
    Wainwright P; Carroll AM; Collar DC; Day SW; Higham TE; Holzman RA
    Integr Comp Biol; 2007 Jul; 47(1):96-106. PubMed ID: 21672823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.