These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 22031032)
1. Role of osmotic and salt stress in the expression of erythrose reductase in Candida magnoliae. Park EH; Lee HY; Ryu YW; Seo JH; Kim MD J Microbiol Biotechnol; 2011 Oct; 21(10):1064-8. PubMed ID: 22031032 [TBL] [Abstract][Full Text] [Related]
2. Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110. Lee DH; Lee YJ; Ryu YW; Seo JH Microb Cell Fact; 2010 Jun; 9():43. PubMed ID: 20529366 [TBL] [Abstract][Full Text] [Related]
3. Purification and characterization of a novel erythrose reductase from Candida magnoliae. Lee JK; Kim SY; Ryu YW; Seo JH; Kim JH Appl Environ Microbiol; 2003 Jul; 69(7):3710-8. PubMed ID: 12839736 [TBL] [Abstract][Full Text] [Related]
4. Erythritol production with minimum by-product using Candida magnoliae mutant. Ghezelbash GR; Nahvi I; Malekpour A Prikl Biokhim Mikrobiol; 2014; 50(3):324-8. PubMed ID: 25757342 [TBL] [Abstract][Full Text] [Related]
5. Characterization of erythrose reductase from Yarrowia lipolytica and its influence on erythritol synthesis. Janek T; Dobrowolski A; Biegalska A; Mirończuk AM Microb Cell Fact; 2017 Jul; 16(1):118. PubMed ID: 28693571 [TBL] [Abstract][Full Text] [Related]
6. Cloning and characterization of the orotidine-5'-phosphate decarboxylase gene (URA3) from the osmotolerant yeast Candida magnoliae. Park EH; Seo JH; Kim MD J Microbiol Biotechnol; 2012 May; 22(5):642-8. PubMed ID: 22561858 [TBL] [Abstract][Full Text] [Related]
7. Cloning and characterization of a glyoxalase I gene from the osmotolerant yeast Candida magnoliae. Park EH; Lee DH; Seo JH; Kim MD J Microbiol Biotechnol; 2011 Mar; 21(3):277-83. PubMed ID: 21464599 [TBL] [Abstract][Full Text] [Related]
8. Gene expression and function involved in polyol biosynthesis of Trichosporonoides megachiliensis under hyper-osmotic stress. Kobayashi Y; Yoshida J; Iwata H; Koyama Y; Kato J; Ogihara J; Kasumi T J Biosci Bioeng; 2013 Jun; 115(6):645-50. PubMed ID: 23294575 [TBL] [Abstract][Full Text] [Related]
9. Proteomic analysis of fructophilic properties of osmotolerant Candida magnoliae. Yu JH; Lee DH; Park YC; Lee MG; Kim DO; Ryu YW; Seo JH J Microbiol Biotechnol; 2008 Feb; 18(2):248-54. PubMed ID: 18309268 [TBL] [Abstract][Full Text] [Related]
10. Cloning of the transketolase gene from erythritol-producing yeast Candida magnoliae. Yoo BH; Park EH; Seo JH; Kim MD J Microbiol Biotechnol; 2014 Oct; 24(10):1389-96. PubMed ID: 25394484 [TBL] [Abstract][Full Text] [Related]
11. Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Yu JH; Lee DH; Oh YJ; Han KC; Ryu YW; Seo JH Appl Biochem Biotechnol; 2006; 129-132():870-9. PubMed ID: 16915695 [TBL] [Abstract][Full Text] [Related]
12. Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Yu JH; Lee DH; Oh YJ; Han KC; Ryu YW; Seo JH Appl Biochem Biotechnol; 2006 Mar; 131(1-3):870-9. PubMed ID: 18563661 [TBL] [Abstract][Full Text] [Related]
13. The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Aguilera J; Prieto JA Curr Genet; 2001 Jul; 39(5-6):273-83. PubMed ID: 11525399 [TBL] [Abstract][Full Text] [Related]
14. Molecular characterization of a gene for aldose reductase ( CbXYL1) from Candida boidinii and its expression in Saccharomyces cerevisiae. Kang MH; Ni H; Jeffries TW Appl Biochem Biotechnol; 2003; 105 -108():265-76. PubMed ID: 12721450 [TBL] [Abstract][Full Text] [Related]
15. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the osmotic response element of the human aldose reductase gene promoter. Ruepp B; Bohren KM; Gabbay KH Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8624-9. PubMed ID: 8710921 [TBL] [Abstract][Full Text] [Related]
17. Investigation of protein expression profiles of erythritol-producing Candida magnoliae in response to glucose perturbation. Kim HJ; Lee HR; Kim CS; Jin YS; Seo JH Enzyme Microb Technol; 2013 Aug; 53(3):174-80. PubMed ID: 23830459 [TBL] [Abstract][Full Text] [Related]
18. Understanding the role of GRE3 in the erythritol biosynthesis pathway in Saccharomyces uvarum and its implication in osmoregulation and redox homeostasis. Albillos-Arenal S; Minebois R; Querol A; Barrio E Microb Biotechnol; 2023 Sep; 16(9):1858-1871. PubMed ID: 37449952 [TBL] [Abstract][Full Text] [Related]
19. Cloning of the xylose reductase gene of Candida milleri. Sim HS; Park EH; Kwon SY; Choi SK; Lee SH; Kim MD J Microbiol Biotechnol; 2013; 23(7):984-92. PubMed ID: 23711518 [TBL] [Abstract][Full Text] [Related]
20. Induction of rat aldose reductase gene transcription is mediated through the cis-element, osmotic response element (ORE): increased synthesis and/or activation by phosphorylation of ORE-binding protein is a key step. Aida K; Tawata M; Ikegishi Y; Onaya T Endocrinology; 1999 Feb; 140(2):609-17. PubMed ID: 9927284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]