BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22031496)

  • 1. Insight into the role of a unique SSEHA motif in the activity and stability of Helicobacter pylori arginase.
    Srivastava A; Dwivedi N; Samanta U; Sau AK
    IUBMB Life; 2011 Nov; 63(11):1027-36. PubMed ID: 22031496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical studies on Helicobacter pylori arginase: insight into the difference in activity compared to other arginases.
    Srivastava A; Sau AK
    IUBMB Life; 2010 Dec; 62(12):906-15. PubMed ID: 21190293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional insights into the regulation of Helicobacter pylori arginase activity by an evolutionary nonconserved motif.
    Srivastava A; Meena SK; Alam M; Nayeem SM; Deep S; Sau AK
    Biochemistry; 2013 Jan; 52(3):508-19. PubMed ID: 23270419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of a disulphide bond in Helicobacter pylori arginase.
    Srivastava A; Dwivedi N; Sau AK
    Biochem Biophys Res Commun; 2010 May; 395(3):348-51. PubMed ID: 20381458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular modeling of Helicobacter pylori arginase and the inhibitor coordination interactions.
    Azizian H; Bahrami H; Pasalar P; Amanlou M
    J Mol Graph Model; 2010 Apr; 28(7):626-35. PubMed ID: 20080052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The activity of Plasmodium falciparum arginase is mediated by a novel inter-monomer salt-bridge between Glu295-Arg404.
    Wells GA; Müller IB; Wrenger C; Louw AI
    FEBS J; 2009 Jul; 276(13):3517-30. PubMed ID: 19456858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evolutionary non-conserved motif in Helicobacter pylori arginase mediates positioning of the loop containing the catalytic residue for catalysis.
    Dutta A; Sarkar D; Murarka P; Kausar T; Narayan S; Mazumder M; Ainavarapu SRK; Gourinath S; Sau AK
    Biochem J; 2021 Feb; 478(4):871-894. PubMed ID: 33480396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural, enzymatic and biochemical studies on Helicobacter pylori arginase.
    Zhang X; Zhang J; Zhang R; Guo Y; Wu C; Mao X; Guo G; Zhang Y; Li D; Zou Q
    Int J Biochem Cell Biol; 2013 May; 45(5):995-1002. PubMed ID: 23454280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginase of Helicobacter Gastric Pathogens Uses a Unique Set of Non-catalytic Residues for Catalysis.
    George G; Kombrabail M; Raninga N; Sau AK
    Biophys J; 2017 Mar; 112(6):1120-1134. PubMed ID: 28355540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-induced change in catalytic loop positioning in Helicobacter pylori arginase alters catalytic function.
    Dutta A; Mazumder M; Alam M; Gourinath S; Sau AK
    Biochem J; 2019 Dec; 476(23):3595-3614. PubMed ID: 31746966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of Helicobacter pylori arginase, RocF: unique features among the arginase superfamily.
    McGee DJ; Zabaleta J; Viator RJ; Testerman TL; Ochoa AC; Mendz GL
    Eur J Biochem; 2004 May; 271(10):1952-62. PubMed ID: 15128304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helicobacter pylori UreE, a urease accessory protein: specific Ni(2+)- and Zn(2+)-binding properties and interaction with its cognate UreG.
    Bellucci M; Zambelli B; Musiani F; Turano P; Ciurli S
    Biochem J; 2009 Jul; 422(1):91-100. PubMed ID: 19476442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional importance of first-shell metal ligands in the binuclear manganese cluster of arginase I.
    Cama E; Emig FA; Ash DE; Christianson DW
    Biochemistry; 2003 Jul; 42(25):7748-58. PubMed ID: 12820884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of substrate recognition by human arginase type I--agmatinase activity of the N130D variant.
    Alarcón R; Orellana MS; Neira B; Uribe E; García JR; Carvajal N
    FEBS J; 2006 Dec; 273(24):5625-31. PubMed ID: 17212779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase.
    Gowher H; Loutchanwoot P; Vorobjeva O; Handa V; Jurkowska RZ; Jurkowski TP; Jeltsch A
    J Mol Biol; 2006 Mar; 357(3):928-41. PubMed ID: 16472822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altering the binuclear manganese cluster of arginase diminishes thermostability and catalytic function.
    Scolnick LR; Kanyo ZF; Cavalli RC; Ash DE; Christianson DW
    Biochemistry; 1997 Aug; 36(34):10558-65. PubMed ID: 9265637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural metal dependency of the arginase from the human malaria parasite Plasmodium falciparum.
    Müller IB; Walter RD; Wrenger C
    Biol Chem; 2005 Feb; 386(2):117-26. PubMed ID: 15843155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of active site mutations on the metal binding affinity, catalytic competence, and stability of the family II pyrophosphatase from Bacillus subtilis.
    Halonen P; Tammenkoski M; Niiranen L; Huopalahti S; Parfenyev AN; Goldman A; Baykov A; Lahti R
    Biochemistry; 2005 Mar; 44(10):4004-10. PubMed ID: 15751976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substitutions of coenzyme-binding, nonpolar residues improve the low-temperature activity of thermophilic dehydrogenases.
    Hayashi S; Akanuma S; Onuki W; Tokunaga C; Yamagishi A
    Biochemistry; 2011 Oct; 50(40):8583-93. PubMed ID: 21894900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression, purification and characterization of arginase from Helicobacter pylori in its apo form.
    Zhang J; Zhang X; Wu C; Lu D; Guo G; Mao X; Zhang Y; Wang DC; Li D; Zou Q
    PLoS One; 2011; 6(10):e26205. PubMed ID: 22028830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.