These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 22031571)
21. ORC-GAC-Fe0 system for the remediation of trichloroethylene and monochlorobenzene contaminated aquifer: 1. Adsorption and degradation. Lin Q; Chen YX; Plagentz V; Schäfer D; Dahmke A J Environ Sci (China); 2004; 16(1):108-12. PubMed ID: 14971463 [TBL] [Abstract][Full Text] [Related]
22. A quantitative study of the effects of particle' properties and environmental conditions on the electron efficiency of Pd and sulfidated nanoscale zero-valent irons. Gong L; Zhang Z; Xia C; Zheng J; Gu Y; He F Sci Total Environ; 2022 Dec; 853():158469. PubMed ID: 36058331 [TBL] [Abstract][Full Text] [Related]
23. [Microbial reductive dechlorination of TCE with nano iron serving as electron donor]. Xiu ZM; Li TL; Jin ZH; Alvarez PJ Huan Jing Ke Xue; 2009 Jun; 30(6):1791-6. PubMed ID: 19662870 [TBL] [Abstract][Full Text] [Related]
24. Kinetic and isotope analyses of tetrachloroethylene and trichloroethylene degradation by model Fe(II)-bearing minerals. Liang X; Philp RP; Butler EC Chemosphere; 2009 Mar; 75(1):63-9. PubMed ID: 19111888 [TBL] [Abstract][Full Text] [Related]
25. Regeneration of granular activated carbon with adsorbed trichloroethylene using wet peroxide oxidation. Okawa K; Suzuki K; Takeshita T; Nakano K Water Res; 2007 Mar; 41(5):1045-51. PubMed ID: 17224174 [TBL] [Abstract][Full Text] [Related]
26. Dechlorination of chlorinated hydrocarbons by bimetallic Ni/Fe immobilized on polyethylene glycol-grafted microfiltration membranes under anoxic conditions. Parshetti GK; Doong RA Chemosphere; 2012 Jan; 86(4):392-9. PubMed ID: 22115467 [TBL] [Abstract][Full Text] [Related]
27. Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Xiu ZM; Jin ZH; Li TL; Mahendra S; Lowry GV; Alvarez PJ Bioresour Technol; 2010 Feb; 101(4):1141-6. PubMed ID: 19819128 [TBL] [Abstract][Full Text] [Related]
28. Carbon isotope fractionation during reductive dechlorination of TCE in batch experiments with iron samples from reactive barriers. Schüth C; Bill M; Barth JA; Slater GF; Kalin RM J Contam Hydrol; 2003 Oct; 66(1-2):25-37. PubMed ID: 14516939 [TBL] [Abstract][Full Text] [Related]
29. Synergetic degradation of Fe/Cu/C for groundwater polluted by trichloroethylene. Zhang W; Li L; Lin K; Xiong B; Li B; Lu S; Guo M; Cui X Water Sci Technol; 2012; 65(12):2258-64. PubMed ID: 22643424 [TBL] [Abstract][Full Text] [Related]
30. Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept. Phenrat T; Thongboot T; Lowry GV Environ Sci Technol; 2016 Jan; 50(2):872-80. PubMed ID: 26654836 [TBL] [Abstract][Full Text] [Related]
31. Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation. Wang W; Zhou M; Jin Z; Li T J Hazard Mater; 2010 Jan; 173(1-3):724-30. PubMed ID: 19773119 [TBL] [Abstract][Full Text] [Related]
32. Iron and organo-bentonite for the reduction and sorption of trichloroethylene. Cho HH; Lee T; Hwang SJ; Park JW Chemosphere; 2005 Jan; 58(1):103-8. PubMed ID: 15522338 [TBL] [Abstract][Full Text] [Related]
33. Reductive Dechlorination of Trichloroethene by Zero-valent Iron Nanoparticles: Reactivity Enhancement through Sulfidation Treatment. Han Y; Yan W Environ Sci Technol; 2016 Dec; 50(23):12992-13001. PubMed ID: 27934264 [TBL] [Abstract][Full Text] [Related]
34. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite. Ahmad A; Gu X; Li L; Lv S; Xu Y; Guo X Environ Sci Pollut Res Int; 2015 Nov; 22(22):17876-85. PubMed ID: 26162447 [TBL] [Abstract][Full Text] [Related]
35. Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Zhan J; Kolesnichenko I; Sunkara B; He J; McPherson GL; Piringer G; John VT Environ Sci Technol; 2011 Mar; 45(5):1949-54. PubMed ID: 21299241 [TBL] [Abstract][Full Text] [Related]
36. Dechlorination of trichloroethylene by immobilized autotrophic hydrogen-bacteria and zero-valent iron. Wang SM; Tseng SK J Biosci Bioeng; 2009 Mar; 107(3):287-92. PubMed ID: 19269594 [TBL] [Abstract][Full Text] [Related]
37. Electrochemical investigation of the rate-limiting mechanisms for trichloroethylene and carbon tetrachloride reduction at iron surfaces. Li T; Farrell J Environ Sci Technol; 2001 Sep; 35(17):3560-5. PubMed ID: 11563664 [TBL] [Abstract][Full Text] [Related]
38. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media. Busch J; Meißner T; Potthoff A; Oswald SE J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524 [TBL] [Abstract][Full Text] [Related]
39. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Liu Y; Lowry GV Environ Sci Technol; 2006 Oct; 40(19):6085-90. PubMed ID: 17051804 [TBL] [Abstract][Full Text] [Related]
40. Performance and Mechanisms of Sulfidated Nanoscale Zero-Valent Iron Materials for Toxic TCE Removal from the Groundwater. Lang Y; Yu Y; Zou H; Ye J; Zhang S Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627834 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]