These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22031579)

  • 21. Phosphorus removal from synthetic and municipal wastewater using spent alum sludge.
    Georgantas DA; Grigoropoulou HP
    Water Sci Technol; 2005; 52(10-11):525-32. PubMed ID: 16459830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetic separation of iron and heavy metals from water.
    Navratil JD; Shing Tsair MT
    Water Sci Technol; 2003; 47(1):29-32. PubMed ID: 12578170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of redox potential and pH changes on phosphorus retention by melter slag filters treating wastewater.
    Pratt C; Shilton A; Pratt S; Haverkamp RG; Elmetri I
    Environ Sci Technol; 2007 Sep; 41(18):6585-90. PubMed ID: 17948812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand.
    Chang YY; Song KH; Yang JK
    J Hazard Mater; 2008 Feb; 150(3):565-72. PubMed ID: 17570581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorus retention in a 20-year-old septic system filter bed.
    Robertson WD
    J Environ Qual; 2012; 41(5):1437-44. PubMed ID: 23099934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced coagulation of ferric chloride aided by tannic acid for phosphorus removal from wastewater.
    Zhou Y; Xing XH; Liu Z; Cui L; Yu A; Feng Q; Yang H
    Chemosphere; 2008 May; 72(2):290-8. PubMed ID: 18395769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding colloidal FeSx formation from iron phosphate precipitation sludge for optimal phosphorus recovery.
    Likosova EM; Keller J; Rozendal RA; Poussade Y; Freguia S
    J Colloid Interface Sci; 2013 Aug; 403():16-21. PubMed ID: 23664336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laboratory and pilot-scale phosphate and ammonium removal by controlled struvite precipitation following coagulation and flocculation of swine wastewater.
    Laridi R; Auclair JC; Benmoussa H
    Environ Technol; 2005 May; 26(5):525-36. PubMed ID: 15974270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron.
    Leupin OX; Hug SJ
    Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing oxidation of TNT and RDX in wastewater: pre-treatment with elemental iron.
    Oh SY; Cha DK; Chiu PC; Kim BJ
    Water Sci Technol; 2003; 47(10):93-9. PubMed ID: 12862222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of iron ochre from mine drainage treatment for removal of phosphorus from wastewater.
    Dobbie KE; Heal KV; Aumônier J; Smith KA; Johnston A; Younger PL
    Chemosphere; 2009 May; 75(6):795-800. PubMed ID: 19195678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vivianite as an important iron phosphate precipitate in sewage treatment plants.
    Wilfert P; Mandalidis A; Dugulan AI; Goubitz K; Korving L; Temmink H; Witkamp GJ; Van Loosdrecht MCM
    Water Res; 2016 Nov; 104():449-460. PubMed ID: 27579874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different depth intermittent sand filters for laboratory treatment of synthetic wastewater with concentrations close to measured septic tank effluent.
    Rodgers M; Walsh G; Healy MG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(1):80-5. PubMed ID: 21104498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous phosphorus removal from water by physicochemical method using zero valent iron packed column.
    Jeong JY; Ahn BM; Kim YJ; Park JY
    Water Sci Technol; 2014; 70(5):895-900. PubMed ID: 25225938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Treatment of surfactant stabilized oil-in-water emulsions by means of chemical oxidation and coagulation.
    Kulik N; Trapido M; Veressinina Y; Munter R
    Environ Technol; 2007 Dec; 28(12):1345-55. PubMed ID: 18341145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction of coagulant amount added to activated sludge for phosphorus removal.
    Nakajima J; Mishima I
    Water Sci Technol; 2004; 50(7):287-92. PubMed ID: 15553488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada.
    Lishman L; Smyth SA; Sarafin K; Kleywegt S; Toito J; Peart T; Lee B; Servos M; Beland M; Seto P
    Sci Total Environ; 2006 Aug; 367(2-3):544-58. PubMed ID: 16697441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant using ferric and nitrate bioreductions.
    Guo CH; Stabnikov V; Ivanov V
    Bioresour Technol; 2010 Jun; 101(11):3992-9. PubMed ID: 20138755
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of iron(VI) and iron(V) in water and wastewater treatment.
    Sharma VK
    Water Sci Technol; 2004; 49(4):69-74. PubMed ID: 15077950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.