These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22031603)

  • 1. Human gene SLC41A1 encodes for the Na+/Mg²+ exchanger.
    Kolisek M; Nestler A; Vormann J; Schweigel-Röntgen M
    Am J Physiol Cell Physiol; 2012 Jan; 302(1):C318-26. PubMed ID: 22031603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin Modulates the Na+/Mg2+ Exchanger SLC41A1 and Influences Mg2+ Efflux from Intracellular Stores in Transgenic HEK293 Cells.
    Mastrototaro L; Tietjen U; Sponder G; Vormann J; Aschenbach JR; Kolisek M
    J Nutr; 2015 Nov; 145(11):2440-7. PubMed ID: 26355001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the Na+-dependent Mg2+ transport in sheep ruminal epithelial cells.
    Schweigel M; Park HS; Etschmann B; Martens H
    Am J Physiol Gastrointest Liver Physiol; 2006 Jan; 290(1):G56-65. PubMed ID: 16109844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substitution p.A350V in Na⁺/Mg²⁺ exchanger SLC41A1, potentially associated with Parkinson's disease, is a gain-of-function mutation.
    Kolisek M; Sponder G; Mastrototaro L; Smorodchenko A; Launay P; Vormann J; Schweigel-Röntgen M
    PLoS One; 2013; 8(8):e71096. PubMed ID: 23976986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and functional activity of the Na/Mg exchanger, TRPM7 and MagT1 are changed to regulate Mg homeostasis and transport in rumen epithelial cells.
    Schweigel M; Kolisek M; Nikolic Z; Kuzinski J
    Magnes Res; 2008 Jun; 21(2):118-23. PubMed ID: 18705540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SLC41 transporters--molecular identification and functional role.
    Schweigel-Röntgen M; Kolisek M
    Curr Top Membr; 2014; 73():383-410. PubMed ID: 24745990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SLC41A1 knockdown inhibits angiotensin II-induced cardiac fibrosis by preventing Mg(2+) efflux and Ca(2+) signaling in cardiac fibroblasts.
    Yu N; Jiang J; Yu Y; Li H; Huang X; Ma Y; Zhang L; Zou J; Zhang B; Chen S; Liu P
    Arch Biochem Biophys; 2014 Dec; 564():74-82. PubMed ID: 25263961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variant R244H in Na+/Mg2+ exchanger SLC41A1 in Taiwanese Parkinson's disease is associated with loss of Mg2+ efflux function.
    Lin CH; Wu YR; Chen WL; Wang HC; Lee CM; Lee-Chen GJ; Chen CM
    Parkinsonism Relat Disord; 2014 Jun; 20(6):600-3. PubMed ID: 24661466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal regulation of Mg2+ transport via Na/Mg exchanger in sickle erythrocytes.
    Rivera A; Ferreira A; Bertoni D; Romero JR; Brugnara C
    Blood; 2005 Jan; 105(1):382-6. PubMed ID: 15353477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of human SLC41A1, a Mg2+ transporter with similarity to prokaryotic MgtE Mg2+ transporters.
    Goytain A; Quamme GA
    Physiol Genomics; 2005 May; 21(3):337-42. PubMed ID: 15713785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sodium zinc exchange mechanism is mediating extrusion of zinc in mammalian cells.
    Ohana E; Segal D; Palty R; Ton-That D; Moran A; Sensi SL; Weiss JH; Hershfinkel M; Sekler I
    J Biol Chem; 2004 Feb; 279(6):4278-84. PubMed ID: 14581475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SLC41A1 is essential for magnesium homeostasis in vivo.
    Arjona FJ; Latta F; Mohammed SG; Thomassen M; van Wijk E; Bindels RJM; Hoenderop JGJ; de Baaij JHF
    Pflugers Arch; 2019 Jun; 471(6):845-860. PubMed ID: 30417250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-dependent recovery of ionised magnesium concentration following magnesium load in rat heart myocytes.
    Almulla HA; Bush PG; Steele MG; Flatman PW; Ellis D
    Pflugers Arch; 2006 Feb; 451(5):657-67. PubMed ID: 16133259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effect of imipramine and related compounds on Mg2+ efflux from rat erythrocytes.
    Ebel H; Hollstein M; Günther T
    Biochim Biophys Acta; 2004 Dec; 1667(2):132-40. PubMed ID: 15581848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms, regulation and pathologic significance of Mg2+ efflux from erythrocytes.
    Günther T
    Magnes Res; 2006 Sep; 19(3):190-8. PubMed ID: 17172009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a functional Na+/Mg2+ exchanger in human trophoblast cells.
    Standley PR; Standley CA
    Am J Hypertens; 2002 Jun; 15(6):565-70. PubMed ID: 12074360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced sodium-dependent extrusion of magnesium in mutant cells established from a mouse renal tubular cell line.
    Watanabe M; Konishi M; Ohkido I; Matsufuji S
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F742-8. PubMed ID: 15886276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular Mg(2+)-dependent Na+, K+, and Cl- efflux in squid giant axons.
    Rasgado-Flores H; Gonzalez-Serratos H; DeSantiago J
    Am J Physiol; 1994 Apr; 266(4 Pt 1):C1112-7. PubMed ID: 8178958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SLC41A1 knockout mice display normal magnesium homeostasis.
    Ilenwabor BP; Franken GAC; Sponder G; Bos C; Racay P; Kolisek M; Hoenderop JGJ; de Baaij JHF
    Am J Physiol Renal Physiol; 2022 Nov; 323(5):F553-F563. PubMed ID: 36049064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of glutamate-stimulated Mg2+ influx and subsequent Mg2+ efflux in rat forebrain neurones in culture.
    Stout AK; Li-Smerin Y; Johnson JW; Reynolds IJ
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):641-57. PubMed ID: 8734978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.