These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22031733)

  • 1. Force transformation in spider strain sensors: white light interferometry.
    Schaber CF; Gorb SN; Barth FG
    J R Soc Interface; 2012 Jun; 9(71):1254-64. PubMed ID: 22031733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling of arachnid slit sensilla: II. Actual lyriform organs and the face deformations of the individual slits.
    Hössl B; Böhm HJ; Schaber CF; Rammerstorfer FG; Barth FG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Sep; 195(9):881-94. PubMed ID: 19685059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slit sense organ distribution on the legs of two species of orb-weaving spider (Araneae: Araneidae).
    Miller TE; Taylor GK; Mortimer B
    Arthropod Struct Dev; 2022 Mar; 67():101140. PubMed ID: 35137691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spider mechanoreceptors.
    Barth FG
    Curr Opin Neurobiol; 2004 Aug; 14(4):415-22. PubMed ID: 15321061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying the deformation of arachnid slit sensilla by a fracture mechanical approach.
    Hössl B; Böhm HJ; Rammerstorfer FG; Müllan R; Barth FG
    J Biomech; 2006; 39(10):1761-8. PubMed ID: 16054634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From stress and strain to spikes: mechanotransduction in spider slit sensilla.
    French AS; Torkkeli PH; Seyfarth EA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Nov; 188(10):739-52. PubMed ID: 12466950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromechanical properties of strain-sensitive lyriform organs of a wandering spider (Cupiennius salei).
    Young SL; Chyasnavichyus M; Barth FG; Zlotnikov I; Politi Y; Tsukruk VV
    Acta Biomater; 2016 Sep; 41():40-51. PubMed ID: 27282647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element modeling of arachnid slit sensilla-I. The mechanical significance of different slit arrays.
    Hössl B; Böhm HJ; Rammerstorfer FG; Barth FG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Apr; 193(4):445-59. PubMed ID: 17186249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In search of differences between the two types of sensory cells innervating spider slit sensilla (Cupiennius salei Keys.).
    Molina J; Schaber CF; Barth FG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Nov; 195(11):1031-41. PubMed ID: 19760269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic nanoscale properties of cuticle contribute to the high-pass properties of spider vibration receptor (Cupiennius salei Keys).
    McConney ME; Schaber CF; Julian MD; Barth FG; Tsukruk VV
    J R Soc Interface; 2007 Dec; 4(17):1135-43. PubMed ID: 17412676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring strain in the exoskeleton of spiders-virtues and caveats.
    Blickhan R; Weihmann T; Barth FG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 Mar; 207(2):191-204. PubMed ID: 33459819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro- and nano-structural details of a spider's filter for substrate vibrations: relevance for low-frequency signal transmission.
    Erko M; Younes-Metzler O; Rack A; Zaslansky P; Young SL; Milliron G; Chyasnavichyus M; Barth FG; Fratzl P; Tsukruk V; Zlotnikov I; Politi Y
    J R Soc Interface; 2015 Mar; 12(104):20141111. PubMed ID: 25631567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air motion sensing hairs of arthropods detect high frequencies at near-maximal mechanical efficiency.
    Bathellier B; Steinmann T; Barth FG; Casas J
    J R Soc Interface; 2012 Jun; 9(71):1131-43. PubMed ID: 22171067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanotransduction in spider slit sensilla.
    French AS; Torkkeli PH
    Can J Physiol Pharmacol; 2004; 82(8-9):541-8. PubMed ID: 15523511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular recording from a spider vibration receptor.
    Gingl E; Burger AM; Barth FG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 May; 192(5):551-8. PubMed ID: 16456658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transduction and adaptation in spider slit sense organ mechanoreceptors.
    Juusola M; French AS
    J Neurophysiol; 1995 Dec; 74(6):2513-23. PubMed ID: 8747210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slit sense organs on the scorpion leg (Androctonus australis L., Buthidae).
    Barth FG; Wadepuhl M
    J Morphol; 1975 Feb; 145(2):209-227. PubMed ID: 30304874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system.
    Kang D; Pikhitsa PV; Choi YW; Lee C; Shin SS; Piao L; Park B; Suh KY; Kim TI; Choi M
    Nature; 2014 Dec; 516(7530):222-6. PubMed ID: 25503234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural correlates of mechanosensory transduction and adaptation in identified neurons of spider slit sensilla.
    Höger U; Seyfarth EA
    J Comp Physiol A; 2001 Nov; 187(9):727-36. PubMed ID: 11778834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recording from cuticular mechanoreceptors during mechanical stimulation.
    Juusola M; French AS
    Pflugers Arch; 1995 Nov; 431(1):125-8. PubMed ID: 8584409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.