These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 22031766)
1. An in vitro spinal cord slice preparation for recording from lumbar motoneurons of the adult mouse. Mitra P; Brownstone RM J Neurophysiol; 2012 Jan; 107(2):728-41. PubMed ID: 22031766 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory synaptic modulation of renshaw cell activity in the lumbar spinal cord of neonatal mice. Nishimaru H; Koganezawa T; Kakizaki M; Ebihara T; Yanagawa Y J Neurophysiol; 2010 Jun; 103(6):3437-47. PubMed ID: 20410357 [TBL] [Abstract][Full Text] [Related]
3. Excitatory effect of histamine on rat spinal motoneurons by activation of both H₁ and H₂ receptors in vitro. Wu GY; Han XH; Zhuang QX; Zhang J; Yung WH; Chan YS; Zhu JN; Wang JJ J Neurosci Res; 2012 Jan; 90(1):132-42. PubMed ID: 21922515 [TBL] [Abstract][Full Text] [Related]
4. Intrinsic activity and positive feedback in motor circuits in organotypic spinal cord slice cultures. Magloire V; Streit J Eur J Neurosci; 2009 Oct; 30(8):1487-97. PubMed ID: 19811528 [TBL] [Abstract][Full Text] [Related]
5. Early electrophysiological abnormalities in lumbar motoneurons in a transgenic mouse model of amyotrophic lateral sclerosis. Bories C; Amendola J; Lamotte d'Incamps B; Durand J Eur J Neurosci; 2007 Jan; 25(2):451-9. PubMed ID: 17284186 [TBL] [Abstract][Full Text] [Related]
6. Early signs of motoneuron vulnerability in a disease model system: Characterization of transverse slice cultures of spinal cord isolated from embryonic ALS mice. Avossa D; Grandolfo M; Mazzarol F; Zatta M; Ballerini L Neuroscience; 2006; 138(4):1179-94. PubMed ID: 16442737 [TBL] [Abstract][Full Text] [Related]
7. Whole cell recordings from visualized neurons in the inner laminae of the functionally intact spinal cord. Dyck J; Gosgnach S J Neurophysiol; 2009 Jul; 102(1):590-7. PubMed ID: 19386756 [TBL] [Abstract][Full Text] [Related]
8. Visual patch clamp recording of neurons in thick portions of the adult spinal cord. Munch AS; Smith M; Moldovan M; Perrier JF J Neurosci Methods; 2010 Jul; 190(2):205-13. PubMed ID: 20488203 [TBL] [Abstract][Full Text] [Related]
9. In vitro sacral cord preparation and motoneuron recording from adult mice. Jiang MC; Heckman CJ J Neurosci Methods; 2006 Sep; 156(1-2):31-6. PubMed ID: 16574242 [TBL] [Abstract][Full Text] [Related]
10. Postnatal changes in the inactivation properties of voltage-gated sodium channels contribute to the mature firing pattern of spinal motoneurons. Carlin KP; Liu J; Jordan LM J Neurophysiol; 2008 Jun; 99(6):2864-76. PubMed ID: 18400961 [TBL] [Abstract][Full Text] [Related]
11. An ex vivo preparation of mature mice spinal cord to study synaptic transmission on motoneurons. Moghaddasi M; Velumian AA; Zhang L; Fehlings MG J Neurosci Methods; 2007 Jan; 159(1):1-7. PubMed ID: 16887193 [TBL] [Abstract][Full Text] [Related]
12. Locomotor-related activity of GABAergic interneurons localized in the ventrolateral region in the isolated spinal cord of neonatal mice. Nishimaru H; Sakagami H; Kakizaki M; Yanagawa Y J Neurophysiol; 2011 Oct; 106(4):1782-92. PubMed ID: 21734105 [TBL] [Abstract][Full Text] [Related]
13. Locomotor pattern in the adult zebrafish spinal cord in vitro. Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928 [TBL] [Abstract][Full Text] [Related]
14. Increase in alpha-CGRP and GAP-43 in aged motoneurons: a study of peptides, growth factors, and ChAT mRNA in the lumbar spinal cord of senescent rats with symptoms of hindlimb incapacities. Johnson H; Mossberg K; Arvidsson U; Piehl F; Hökfelt T; Ulfhake B J Comp Neurol; 1995 Aug; 359(1):69-89. PubMed ID: 8557848 [TBL] [Abstract][Full Text] [Related]
15. An in vitro protocol for recording from spinal motoneurons of adult rats. Carp JS; Tennissen AM; Mongeluzi DL; Dudek CJ; Chen XY; Wolpaw JR J Neurophysiol; 2008 Jul; 100(1):474-81. PubMed ID: 18463177 [TBL] [Abstract][Full Text] [Related]
16. Changes in electrophysiological properties of lamprey spinal motoneurons during fictive swimming. Martin MM J Neurophysiol; 2002 Nov; 88(5):2463-76. PubMed ID: 12424286 [TBL] [Abstract][Full Text] [Related]
17. Evidence for a critical period in the development of excitability and potassium currents in mouse lumbar superficial dorsal horn neurons. Walsh MA; Graham BA; Brichta AM; Callister RJ J Neurophysiol; 2009 Apr; 101(4):1800-12. PubMed ID: 19176612 [TBL] [Abstract][Full Text] [Related]
18. Localization of L-type calcium channel Ca(V)1.3 in cat lumbar spinal cord--with emphasis on motoneurons. Zhang M; Sukiasyan N; Møller M; Bezprozvanny I; Zhang H; Wienecke J; Hultborn H Neurosci Lett; 2006 Oct; 407(1):42-7. PubMed ID: 16949207 [TBL] [Abstract][Full Text] [Related]
19. Transient oxidative stress evokes early changes in the functional properties of neonatal rat hypoglossal motoneurons in vitro. Nani F; Cifra A; Nistri A Eur J Neurosci; 2010 Mar; 31(6):951-66. PubMed ID: 20214680 [TBL] [Abstract][Full Text] [Related]
20. Development of spinal motor networks in the chick embryo. O'Donovan M; Sernagor E; Sholomenko G; Ho S; Antal M; Yee W J Exp Zool; 1992 Mar; 261(3):261-73. PubMed ID: 1629659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]