These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22031872)

  • 1. Cognitive mappers to creatures of habit: differential engagement of place and response learning mechanisms predicts human navigational behavior.
    Marchette SA; Bakker A; Shelton AL
    J Neurosci; 2011 Oct; 31(43):15264-8. PubMed ID: 22031872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistent and stable biases in spatial learning mechanisms predict navigational style.
    Furman AJ; Clements-Stephens AM; Marchette SA; Shelton AL
    Cogn Affect Behav Neurosci; 2014 Dec; 14(4):1375-91. PubMed ID: 24830787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the interaction of navigational systems in a reward-based virtual navigation task.
    Raiesdana S
    J Integr Neurosci; 2018; 17(1):27-42. PubMed ID: 29376881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice.
    Iaria G; Petrides M; Dagher A; Pike B; Bohbot VD
    J Neurosci; 2003 Jul; 23(13):5945-52. PubMed ID: 12843299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Which way was I going? Contextual retrieval supports the disambiguation of well learned overlapping navigational routes.
    Brown TI; Ross RS; Keller JB; Hasselmo ME; Stern CE
    J Neurosci; 2010 May; 30(21):7414-22. PubMed ID: 20505108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous navigational strategies and performance in the virtual town.
    Etchamendy N; Bohbot VD
    Hippocampus; 2007; 17(8):595-9. PubMed ID: 17546682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human navigation that requires calculating heading vectors recruits parietal cortex in a virtual and visually sparse water maze task in fMRI.
    Rodriguez PF
    Behav Neurosci; 2010 Aug; 124(4):532-40. PubMed ID: 20695652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural correlates of forward planning in a spatial decision task in humans.
    Simon DA; Daw ND
    J Neurosci; 2011 Apr; 31(14):5526-39. PubMed ID: 21471389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage.
    Goodrich-Hunsaker NJ; Livingstone SA; Skelton RW; Hopkins RO
    Hippocampus; 2010 Apr; 20(4):481-91. PubMed ID: 19554566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a cognitive training on spatial learning and associated functional brain activations.
    Hötting K; Holzschneider K; Stenzel A; Wolbers T; Röder B
    BMC Neurosci; 2013 Jul; 14():73. PubMed ID: 23870447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations.
    Wolbers T; Büchel C
    J Neurosci; 2005 Mar; 25(13):3333-40. PubMed ID: 15800188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age effects on wayfinding and route learning skills.
    Head D; Isom M
    Behav Brain Res; 2010 May; 209(1):49-58. PubMed ID: 20085784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of reward-based spatial learning in persons with cocaine dependence.
    Tau GZ; Marsh R; Wang Z; Torres-Sanchez T; Graniello B; Hao X; Xu D; Packard MG; Duan Y; Kangarlu A; Martinez D; Peterson BS
    Neuropsychopharmacology; 2014 Feb; 39(3):545-55. PubMed ID: 23917430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hex Maze: A new virtual maze able to track acquisition and usage of three navigation strategies.
    Spriggs MJ; Kirk IJ; Skelton RW
    Behav Brain Res; 2018 Feb; 339():195-206. PubMed ID: 29203335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of age on virtual environment place navigation and allocentric cognitive mapping.
    Moffat SD; Resnick SM
    Behav Neurosci; 2002 Oct; 116(5):851-9. PubMed ID: 12369805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segregation of neural circuits involved in spatial learning in reaching and navigational space.
    Nemmi F; Boccia M; Piccardi L; Galati G; Guariglia C
    Neuropsychologia; 2013 Jul; 51(8):1561-70. PubMed ID: 23615031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impairments in precision, rather than spatial strategy, characterize performance on the virtual Morris Water Maze: A case study.
    Kolarik BS; Shahlaie K; Hassan A; Borders AA; Kaufman KC; Gurkoff G; Yonelinas AP; Ekstrom AD
    Neuropsychologia; 2016 Jan; 80():90-101. PubMed ID: 26593960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A preliminary study of sex differences in brain activation during a spatial navigation task in healthy adults.
    Sneider JT; Sava S; Rogowska J; Yurgelun-Todd DA
    Percept Mot Skills; 2011 Oct; 113(2):461-80. PubMed ID: 22185061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A navigational guidance system in the human brain.
    Spiers HJ; Maguire EA
    Hippocampus; 2007; 17(8):618-26. PubMed ID: 17492693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extrahippocampal contributions to age differences in human spatial navigation.
    Moffat SD; Kennedy KM; Rodrigue KM; Raz N
    Cereb Cortex; 2007 Jun; 17(6):1274-82. PubMed ID: 16857855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.