These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 22031889)

  • 1. An improved model for the rate-level functions of auditory-nerve fibers.
    Heil P; Neubauer H; Irvine DR
    J Neurosci; 2011 Oct; 31(43):15424-37. PubMed ID: 22031889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times.
    Peterson AJ; Heil P
    Hear Res; 2018 Jun; 363():1-27. PubMed ID: 28987786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase Locking of Auditory Nerve Fibers: The Role of Lowpass Filtering by Hair Cells.
    Peterson AJ; Heil P
    J Neurosci; 2020 Jun; 40(24):4700-4714. PubMed ID: 32376778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations.
    Wu JS; Young ED; Glowatzki E
    J Neurosci; 2016 Oct; 36(41):10584-10597. PubMed ID: 27733610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope.
    Peterson AJ; Heil P
    J Neurosci; 2019 May; 39(21):4077-4099. PubMed ID: 30867259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
    Heil P; Neubauer H; Brown M; Irvine DR
    Hear Res; 2008 Apr; 238(1-2):25-38. PubMed ID: 18077116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers.
    Peterson AJ; Irvine DR; Heil P
    J Neurosci; 2014 Nov; 34(45):15097-109. PubMed ID: 25378173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory nerve fiber responses to combined acoustic and electric stimulation.
    Miller CA; Abbas PJ; Robinson BK; Nourski KV; Zhang F; Jeng FC
    J Assoc Res Otolaryngol; 2009 Sep; 10(3):425-45. PubMed ID: 19205803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal integration of sound pressure determines thresholds of auditory-nerve fibers.
    Heil P; Neubauer H
    J Neurosci; 2001 Sep; 21(18):7404-15. PubMed ID: 11549751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desynchronization of electrically evoked auditory-nerve activity by high-frequency pulse trains of long duration.
    Litvak LM; Smith ZM; Delgutte B; Eddington DK
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2066-78. PubMed ID: 14587606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike timing in auditory-nerve fibers during spontaneous activity and phase locking.
    Heil P; Peterson AJ
    Synapse; 2017 Jan; 71(1):5-36. PubMed ID: 27466786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unified mechanism for spontaneous-rate and first-spike timing in the auditory nerve.
    Krishna BS
    J Comput Neurosci; 2002; 13(2):71-91. PubMed ID: 12215723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmitter release in inner hair cell synapses: a model analysis of spontaneous and driven rate properties of cochlear nerve fibres.
    Schoonhoven R; Prijs VF; Frijns JH
    Hear Res; 1997 Nov; 113(1-2):247-60. PubMed ID: 9388003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-spike timing of auditory-nerve fibers and comparison with auditory cortex.
    Heil P; Irvine DR
    J Neurophysiol; 1997 Nov; 78(5):2438-54. PubMed ID: 9356395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites.
    Bruce IC; Erfani Y; Zilany MSA
    Hear Res; 2018 Mar; 360():40-54. PubMed ID: 29395616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency.
    Raggio MW; Schreiner CE
    J Neurophysiol; 1994 Nov; 72(5):2334-59. PubMed ID: 7884463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cochlear aging disrupts the correlation between spontaneous rate- and sound-level coding in auditory nerve fibers.
    Heeringa AN; Teske F; Ashida G; Köppl C
    J Neurophysiol; 2023 Sep; 130(3):736-750. PubMed ID: 37584075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simplified physiological model of rate-level functions of auditory-nerve fibers.
    Peterson AJ; Heil P
    Hear Res; 2021 Jul; 406():108258. PubMed ID: 34010767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.