BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

718 related articles for article (PubMed ID: 22032554)

  • 21. Antioxidant and Sensory Assessment of Innovative Coffee Blends of Reduced Caffeine Content.
    Šeremet D; Fabečić P; Vojvodić Cebin A; Mandura Jarić A; Pudić R; Komes D
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison and quantification of chlorogenic acids for differentiation of green Robusta and Arabica coffee beans.
    Badmos S; Lee SH; Kuhnert N
    Food Res Int; 2019 Dec; 126():108544. PubMed ID: 31732084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homostachydrine (pipecolic acid betaine) as authentication marker of roasted blends of Coffea arabica and Coffea canephora (Robusta) beans.
    Servillo L; Giovane A; Casale R; Cautela D; D'Onofrio N; Balestrieri ML; Castaldo D
    Food Chem; 2016 Aug; 205():52-7. PubMed ID: 27006213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee.
    Kamiyama M; Moon JK; Jang HW; Shibamoto T
    J Agric Food Chem; 2015 Feb; 63(7):1996-2005. PubMed ID: 25658375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of roasting time on the sensory profile of arabica and robusta coffee.
    Bicho NC; Leitão AE; Ramalho JC; de Alvarenga NB; Lidon FC
    Ecol Food Nutr; 2013; 52(2):163-77. PubMed ID: 23445394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. (13)C NMR-based metabolomics for the classification of green coffee beans according to variety and origin.
    Wei F; Furihata K; Koda M; Hu F; Kato R; Miyakawa T; Tanokura M
    J Agric Food Chem; 2012 Oct; 60(40):10118-25. PubMed ID: 22989016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical and Biological Characterization of Green and Processed Coffee Beans from
    Gallardo-Ignacio J; Santibáñez A; Oropeza-Mariano O; Salazar R; Montiel-Ruiz RM; Cabrera-Hilerio S; Gonzáles-Cortazar M; Cruz-Sosa F; Nicasio-Torres P
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of the Robusta fraction in a coffee blend via Raman spectroscopy: proof of principle.
    Wermelinger T; D'Ambrosio L; Klopprogge B; Yeretzian C
    J Agric Food Chem; 2011 Sep; 59(17):9074-9. PubMed ID: 21830792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. What kind of coffee do you drink? An investigation on effects of eight different extraction methods.
    Angeloni G; Guerrini L; Masella P; Bellumori M; Daluiso S; Parenti A; Innocenti M
    Food Res Int; 2019 Feb; 116():1327-1335. PubMed ID: 30716922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Espresso coffees, caffeine and chlorogenic acid intake: potential health implications.
    Crozier TW; Stalmach A; Lean ME; Crozier A
    Food Funct; 2012 Jan; 3(1):30-3. PubMed ID: 22130653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Excavation of coffee maturity markers and further research on their changes in coffee cherries of different maturity.
    Hu G; Peng X; Wang X; Li X; Li X; Qiu M
    Food Res Int; 2020 Jun; 132():109121. PubMed ID: 32331680
    [No Abstract]   [Full Text] [Related]  

  • 32. Antiradical activity, phenolics profile, and hydroxymethylfurfural in espresso coffee: influence of technological factors.
    Alves RC; Costa AS; Jerez M; Casal S; Sineiro J; Núñez MJ; Oliveira B
    J Agric Food Chem; 2010 Dec; 58(23):12221-9. PubMed ID: 21070017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of acrylamide during roasting of coffee.
    Bagdonaite K; Derler K; Murkovic M
    J Agric Food Chem; 2008 Aug; 56(15):6081-6. PubMed ID: 18624446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. UHPLC-ESI-QqTOF-MS/MS characterization of minor chlorogenic acids in roasted Coffea arabica from different geographical origin.
    De Rosso M; Colomban S; Flamini R; Navarini L
    J Mass Spectrom; 2018 Sep; 53(9):763-771. PubMed ID: 29974575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro and ex vivo antihydroxyl radical activity of green and roasted coffee.
    Daglia M; Racchi M; Papetti A; Lanni C; Govoni S; Gazzani G
    J Agric Food Chem; 2004 Mar; 52(6):1700-4. PubMed ID: 15030233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Profile and characterization of the chlorogenic acids in green Robusta coffee beans by LC-MS(n): identification of seven new classes of compounds.
    Jaiswal R; Patras MA; Eravuchira PJ; Kuhnert N
    J Agric Food Chem; 2010 Aug; 58(15):8722-37. PubMed ID: 20681662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of p-coumaroylquinic acids in commercial Coffea spp. of different geographical origin and in other wild coffee species.
    Gutiérrez Ortiz AL; Berti F; Solano Sánchez W; Navarini L; Colomban S; Crisafulli P; Forzato C
    Food Chem; 2019 Jul; 286():459-466. PubMed ID: 30827633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of Coffea arabica and Coffea canephora var. robusta in roasted and ground coffee blends.
    Cagliani LR; Pellegrino G; Giugno G; Consonni R
    Talanta; 2013 Mar; 106():169-73. PubMed ID: 23598112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical and sensory profile of new genotypes of Brazilian Coffea canephora.
    Lemos MF; Perez C; da Cunha PHP; Filgueiras PR; Pereira LL; Almeida da Fonseca AF; Ifa DR; Scherer R
    Food Chem; 2020 Apr; 310():125850. PubMed ID: 31771915
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of caffeine, trigonelline and nicotinic acid in espresso coffee: the influence of espresso machines and coffee cultivars.
    Caprioli G; Cortese M; Maggi F; Minnetti C; Odello L; Sagratini G; Vittori S
    Int J Food Sci Nutr; 2014 Jun; 65(4):465-9. PubMed ID: 24467514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.