These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22032612)

  • 1. Rapid control of switchable oil wettability and adhesion on the copper substrate.
    Zhu X; Zhang Z; Xu X; Men X; Yang J; Zhou X; Xue Q
    Langmuir; 2011 Dec; 27(23):14508-13. PubMed ID: 22032612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional superamphiphobic TiO2 nanostructure surfaces with facile wettability and adhesion engineering.
    Huang JY; Lai YK; Pan F; Yang L; Wang H; Zhang KQ; Fuchs H; Chi LF
    Small; 2014 Dec; 10(23):4865-73. PubMed ID: 25070619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Underwater superoleophilic to superoleophobic wetting control on the nanostructured copper substrates.
    Cheng Z; Lai H; Du Y; Fu K; Hou R; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11363-70. PubMed ID: 24083992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication, surface properties, and origin of superoleophobicity for a model textured surface.
    Zhao H; Law KY; Sambhy V
    Langmuir; 2011 May; 27(10):5927-35. PubMed ID: 21486088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-induced reversible wetting transition between the underwater superoleophilicity and superoleophobicity.
    Cheng Z; Lai H; Du Y; Fu K; Hou R; Li C; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):636-41. PubMed ID: 24319986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid formation of superhydrophobic surfaces with fast response wettability transition.
    Zhu X; Zhang Z; Men X; Yang J; Xu X
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3636-41. PubMed ID: 21073178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.
    Wang B; Liang W; Guo Z; Liu W
    Chem Soc Rev; 2015 Jan; 44(1):336-61. PubMed ID: 25311259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling n-Alkanoic Acids.
    Cheng Z; Liu H; Lai H; Du Y; Fu K; Li C; Yu J; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20410-7. PubMed ID: 26307917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clam's shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity.
    Liu X; Zhou J; Xue Z; Gao J; Meng J; Wang S; Jiang L
    Adv Mater; 2012 Jul; 24(25):3401-5. PubMed ID: 22648962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtosecond Laser-Induced Underwater Superoleophobic Surfaces with Reversible pH-Responsive Wettability.
    Zhang J; Yong J; Yang Q; Chen F; Hou X
    Langmuir; 2019 Mar; 35(9):3295-3301. PubMed ID: 30742769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Underwater Thermoresponsive Surface with Switchable Oil-Wettability between Superoleophobicity and Superoleophilicity.
    Liu H; Zhang X; Wang S; Jiang L
    Small; 2015 Jul; 11(27):3338-42. PubMed ID: 25689605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates.
    Zhang Qb; Xu D; Hung TF; Zhang K
    Nanotechnology; 2013 Feb; 24(6):065602. PubMed ID: 23340193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation.
    Zhang F; Zhang WB; Shi Z; Wang D; Jin J; Jiang L
    Adv Mater; 2013 Aug; 25(30):4192-8. PubMed ID: 23788392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile fabrication of a superamphiphobic surface on the copper substrate.
    Zhu X; Zhang Z; Xu X; Men X; Yang J; Zhou X; Xue Q
    J Colloid Interface Sci; 2012 Feb; 367(1):443-9. PubMed ID: 22074690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile creation of hierarchical PDMS microstructures with extreme underwater superoleophobicity for anti-oil application in microfluidic channels.
    Wu D; Wu SZ; Chen QD; Zhao S; Zhang H; Jiao J; Piersol JA; Wang JN; Sun HB; Jiang L
    Lab Chip; 2011 Nov; 11(22):3873-9. PubMed ID: 21952648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Underwater superoleophilicity to superoleophobicity: role of trapped air.
    Jin M; Li S; Wang J; Xue Z; Liao M; Wang S
    Chem Commun (Camb); 2012 Dec; 48(96):11745-7. PubMed ID: 23113322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WET-Induced Layered Organohydrogel as Bioinspired "Sticky-Slippy Skin" for Robust Underwater Oil-Repellency.
    Wan X; Jia L; Liu X; Dai B; Jiang L; Wang S
    Adv Mater; 2022 Apr; 34(16):e2110408. PubMed ID: 35180331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface chemical modification of poly(dimethylsiloxane)-based biomimetic materials: oil-repellent surfaces.
    Ghosh N; Bajoria A; Vaidya AA
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2636-44. PubMed ID: 20356137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro/nanoscale hierarchical structured ZnO mesh film for separation of water and oil.
    Tian D; Zhang X; Wang X; Zhai J; Jiang L
    Phys Chem Chem Phys; 2011 Aug; 13(32):14606-10. PubMed ID: 21769332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.