These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22032799)

  • 1. A molecule to detect and perturb the confinement of charge carriers in quantum dots.
    Frederick MT; Amin VA; Cass LC; Weiss EA
    Nano Lett; 2011 Dec; 11(12):5455-60. PubMed ID: 22032799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Interligand Coupling in Determining the Interfacial Electronic Structure of Colloidal CdS Quantum Dots.
    Harris RD; Amin VA; Lau B; Weiss EA
    ACS Nano; 2016 Jan; 10(1):1395-403. PubMed ID: 26727219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand.
    Frederick MT; Weiss EA
    ACS Nano; 2010 Jun; 4(6):3195-200. PubMed ID: 20503978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subpicosecond Photoinduced Hole Transfer from a CdS Quantum Dot to a Molecular Acceptor Bound Through an Exciton-Delocalizing Ligand.
    Lian S; Weinberg DJ; Harris RD; Kodaimati MS; Weiss EA
    ACS Nano; 2016 Jun; 10(6):6372-82. PubMed ID: 27281685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced rate of radiative decay in CdSe quantum dots upon adsorption of an exciton-delocalizing ligand.
    Jin S; Harris RD; Lau B; Aruda KO; Amin VA; Weiss EA
    Nano Lett; 2014 Sep; 14(9):5323-8. PubMed ID: 25167466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of exciton confinement in quantum dot-organic complexes through energetic alignment of interfacial orbitals.
    Frederick MT; Amin VA; Swenson NK; Ho AY; Weiss EA
    Nano Lett; 2013 Jan; 13(1):287-92. PubMed ID: 23244048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Properties of Strongly Coupled Quantum Dot-Ligand Systems.
    Frederick MT; Amin VA; Weiss EA
    J Phys Chem Lett; 2013 Feb; 4(4):634-40. PubMed ID: 26281879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-Heterocyclic Carbenes as Reversible Exciton-Delocalizing Ligands for Photoluminescent Quantum Dots.
    Westmoreland DE; López-Arteaga R; Weiss EA
    J Am Chem Soc; 2020 Feb; 142(5):2690-2696. PubMed ID: 31934758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots.
    Lee DU; Kim DH; Choi DH; Kim SW; Lee HS; Yoo KH; Kim TW
    Opt Express; 2016 Jan; 24(2):A350-7. PubMed ID: 26832587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-Coupled CdSe/ZnS and CdTe/CdS/ZnS Coreshells for Hybrid Light Emitting Devices.
    Rice Q; Hayes A; Jung S; Wang A; Cho H; Kim WJ; Abdel-Fattah M; Tabibi B; Seo J
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1942-4. PubMed ID: 27433706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Core-Shell Formation in Exciton Confinement Relaxation in Dithiocarbamate-Capped CdSe QDs.
    Kaniyankandy S; Verma S
    J Phys Chem Lett; 2017 Jul; 8(14):3228-3233. PubMed ID: 28661145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Description of the Adsorption and Exciton Delocalizing Properties of p-Substituted Thiophenols on CdSe Quantum Dots.
    Aruda KO; Amin VA; Thompson CM; Lau B; Nepomnyashchii AB; Weiss EA
    Langmuir; 2016 Apr; 32(14):3354-64. PubMed ID: 27002248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CdSe/ZnS quantum dot size dependent carrier relaxation in hybrid organic/inorganic system.
    Uddin A; Wong HS; Teo CC
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7853-9. PubMed ID: 23421148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Dimensional Carrier Confinement in "Giant" CdS/CdSe Excitonic Nanoshells.
    Razgoniaeva N; Moroz P; Yang M; Budkina DS; Eckard H; Augspurger M; Khon D; Tarnovsky AN; Zamkov M
    J Am Chem Soc; 2017 Jun; 139(23):7815-7822. PubMed ID: 28535356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size selective excitonic transition energies in strongly confined CdSe quantum dots.
    Thupakula U; Khan AH; Bal JK; Ariga K; Acharya S
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7709-14. PubMed ID: 22097477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of surface-passivating ligands and ultrasmall CdSe nanocrystal size on the delocalization of exciton confinement.
    Teunis MB; Dolai S; Sardar R
    Langmuir; 2014 Jul; 30(26):7851-8. PubMed ID: 24926916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavefunction Engineering of Type-I/Type-II Excitons of CdSe/CdS Core-Shell Quantum Dots.
    Nandan Y; Mehata MS
    Sci Rep; 2019 Jan; 9(1):2. PubMed ID: 30626883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.