These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 22033128)
1. The feasibility of hybrid automatic segmentation of axillary lymph nodes from a 3-D sonogram. Sammet S; Evans KD; Irfanoglu MO; Strapp A; Machiraju R Ultrasound Med Biol; 2011 Dec; 37(12):2075-85. PubMed ID: 22033128 [TBL] [Abstract][Full Text] [Related]
2. A Computerized System to Assess Axillary Lymph Node Malignancy from Sonographic Images. Chmielewski A; Dufort P; Scaranelo AM Ultrasound Med Biol; 2015 Oct; 41(10):2690-9. PubMed ID: 26206257 [TBL] [Abstract][Full Text] [Related]
3. Automatic detection and segmentation of axillary lymph nodes. Barbu A; Suehling M; Xu X; Liu D; Zhou SK; Comaniciu D Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):28-36. PubMed ID: 20879211 [TBL] [Abstract][Full Text] [Related]
4. Local Transverse-Slice-Based Level-Set Method for Segmentation of 3-D High-Frequency Ultrasonic Backscatter From Dissected Human Lymph Nodes. Thanh Minh Bui ; Coron A; Mamou J; Saegusa-Beecroft E; Yamaguchi T; Yanagihara E; Machi J; Bridal SL; Feleppa EJ IEEE Trans Biomed Eng; 2017 Jul; 64(7):1579-1591. PubMed ID: 28113305 [TBL] [Abstract][Full Text] [Related]
5. An improved graph cut segmentation method for cervical lymph nodes on sonograms and its relationship with node's shape assessment. Zhang J; Wang Y; Shi X Comput Med Imaging Graph; 2009 Dec; 33(8):602-7. PubMed ID: 19596553 [TBL] [Abstract][Full Text] [Related]
6. Fully automatic plaque segmentation in 3-D carotid ultrasound images. Cheng J; Li H; Xiao F; Fenster A; Zhang X; He X; Li L; Ding M Ultrasound Med Biol; 2013 Dec; 39(12):2431-46. PubMed ID: 24063959 [TBL] [Abstract][Full Text] [Related]
7. Real-time 3D interactive segmentation of echocardiographic data through user-based deformation of B-spline explicit active surfaces. Barbosa D; Heyde B; Cikes M; Dietenbeck T; Claus P; Friboulet D; Bernard O; D'hooge J Comput Med Imaging Graph; 2014 Jan; 38(1):57-67. PubMed ID: 24332441 [TBL] [Abstract][Full Text] [Related]
8. Optimal feature point selection and automatic initialization in active shape model search. Lekadir K; Yang GZ Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):434-41. PubMed ID: 18979776 [TBL] [Abstract][Full Text] [Related]
9. B-spline explicit active surfaces: an efficient framework for real-time 3-D region-based segmentation. Barbosa D; Dietenbeck T; Schaerer J; D'hooge J; Friboulet D; Bernard O IEEE Trans Image Process; 2012 Jan; 21(1):241-51. PubMed ID: 22186712 [TBL] [Abstract][Full Text] [Related]
10. Segmentation of prostate from 3-D ultrasound volumes using shape and intensity priors in level set framework. Yang F; Suri J; Fenster A Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2341-4. PubMed ID: 17945709 [TBL] [Abstract][Full Text] [Related]
11. Quantification of thyroid volume using 3-D ultrasound imaging. Kollorz EK; Hahn DA; Linke R; Goecke TW; Hornegger J; Kuwert T IEEE Trans Med Imaging; 2008 Apr; 27(4):457-66. PubMed ID: 18390343 [TBL] [Abstract][Full Text] [Related]
12. Segmentation of neck lymph nodes in CT datasets with stable 3D mass-spring models segmentation of neck lymph nodes. Dornheim J; Seim H; Preim B; Hertel I; Strauss G Acad Radiol; 2007 Nov; 14(11):1389-99. PubMed ID: 17964462 [TBL] [Abstract][Full Text] [Related]
13. 3D prostate boundary segmentation from ultrasound images using 2D active shape models. Hodge AC; Ladak HM Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2337-40. PubMed ID: 17946106 [TBL] [Abstract][Full Text] [Related]
14. Automatic active model initialization via Poisson inverse gradient. Li B; Acton ST IEEE Trans Image Process; 2008 Aug; 17(8):1406-20. PubMed ID: 18632349 [TBL] [Abstract][Full Text] [Related]
15. Prior shape level set segmentation on multistep generated probability maps of MR datasets for fully automatic kidney parenchyma volumetry. Gloger O; Tönies KD; Liebscher V; Kugelmann B; Laqua R; Völzke H IEEE Trans Med Imaging; 2012 Feb; 31(2):312-25. PubMed ID: 21937343 [TBL] [Abstract][Full Text] [Related]
16. Optree: a learning-based adaptive watershed algorithm for neuron segmentation. Uzunbaş MG; Chen C; Metaxas D Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):97-105. PubMed ID: 25333106 [TBL] [Abstract][Full Text] [Related]
17. Segmentation of volumetric MRA images by using capillary active contour. Yan P; Kassim AA Med Image Anal; 2006 Jun; 10(3):317-29. PubMed ID: 16464631 [TBL] [Abstract][Full Text] [Related]
18. A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images. Ghose S; Oliver A; Mitra J; Martí R; Lladó X; Freixenet J; Sidibé D; Vilanova JC; Comet J; Meriaudeau F Med Image Anal; 2013 Aug; 17(6):587-600. PubMed ID: 23666263 [TBL] [Abstract][Full Text] [Related]
19. Semi-automatic segmentation for prostate interventions. Mahdavi SS; Chng N; Spadinger I; Morris WJ; Salcudean SE Med Image Anal; 2011 Apr; 15(2):226-37. PubMed ID: 21084216 [TBL] [Abstract][Full Text] [Related]
20. Shape-driven three-dimensional watersnake segmentation of biological membranes in electron tomography. Nguyen H; Ji Q IEEE Trans Med Imaging; 2008 May; 27(5):616-28. PubMed ID: 18450535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]