These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Modulation of ATR-mediated DNA damage checkpoint response by cryptochrome 1. Kang TH; Leem SH Nucleic Acids Res; 2014 Apr; 42(7):4427-34. PubMed ID: 24489120 [TBL] [Abstract][Full Text] [Related]
6. Critical cholangiocarcinogenesis control by cryptochrome clock genes. Mteyrek A; Filipski E; Guettier C; Oklejewicz M; van der Horst GT; Okyar A; Lévi F Int J Cancer; 2017 Jun; 140(11):2473-2483. PubMed ID: 28224616 [TBL] [Abstract][Full Text] [Related]
7. DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization. Papp SJ; Huber AL; Jordan SD; Kriebs A; Nguyen M; Moresco JJ; Yates JR; Lamia KA Elife; 2015 Mar; 4():. PubMed ID: 25756610 [TBL] [Abstract][Full Text] [Related]
8. Suppression of circadian clock protein cryptochrome 2 promotes osteoarthritis. Bekki H; Duffy T; Okubo N; Olmer M; Alvarez-Garcia O; Lamia K; Kay S; Lotz M Osteoarthritis Cartilage; 2020 Jul; 28(7):966-976. PubMed ID: 32339698 [TBL] [Abstract][Full Text] [Related]
9. Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. Gauger MA; Sancar A Cancer Res; 2005 Aug; 65(15):6828-34. PubMed ID: 16061665 [TBL] [Abstract][Full Text] [Related]
10. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts. Fan Y; Hida A; Anderson DA; Izumo M; Johnson CH Curr Biol; 2007 Jul; 17(13):1091-100. PubMed ID: 17583506 [TBL] [Abstract][Full Text] [Related]
11. Lithium effects on circadian rhythms in fibroblasts and suprachiasmatic nucleus slices from Cry knockout mice. Noguchi T; Lo K; Diemer T; Welsh DK Neurosci Lett; 2016 Apr; 619():49-53. PubMed ID: 26930624 [TBL] [Abstract][Full Text] [Related]
12. Expression of circadian core clock genes in fibroblasts of human gingiva and periodontal ligament is modulated by L-Mimosine and hypoxia in monolayer and spheroid cultures. Janjić K; Kurzmann C; Moritz A; Agis H Arch Oral Biol; 2017 Jul; 79():95-99. PubMed ID: 28350992 [TBL] [Abstract][Full Text] [Related]
13. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Etchegaray JP; Lee C; Wade PA; Reppert SM Nature; 2003 Jan; 421(6919):177-82. PubMed ID: 12483227 [TBL] [Abstract][Full Text] [Related]
14. Cryptochrome deficiency enhances transcription but reduces protein levels of pineal Aanat. Yamanaka Y; Yamada Y; Honma KI; Honma S J Mol Endocrinol; 2018 Oct; 61(4):219-229. PubMed ID: 30328353 [TBL] [Abstract][Full Text] [Related]
15. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. Zhu H; Sauman I; Yuan Q; Casselman A; Emery-Le M; Emery P; Reppert SM PLoS Biol; 2008 Jan; 6(1):e4. PubMed ID: 18184036 [TBL] [Abstract][Full Text] [Related]
16. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Griffin EA; Staknis D; Weitz CJ Science; 1999 Oct; 286(5440):768-71. PubMed ID: 10531061 [TBL] [Abstract][Full Text] [Related]
17. Loss of circadian rhythm and light-induced suppression of pineal melatonin levels in Cry1 and Cry2 double-deficient mice. Yamanaka Y; Suzuki Y; Todo T; Honma K; Honma S Genes Cells; 2010 Oct; 15(10):1063-71. PubMed ID: 20825493 [TBL] [Abstract][Full Text] [Related]
18. DNA damage-specific control of cell death by cryptochrome in p53-mutant ras-transformed cells. Lee JH; Gaddameedhi S; Ozturk N; Ye R; Sancar A Cancer Res; 2013 Jan; 73(2):785-91. PubMed ID: 23149912 [TBL] [Abstract][Full Text] [Related]
20. Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2. Yu W; Nomura M; Ikeda M Biochem Biophys Res Commun; 2002 Jan; 290(3):933-41. PubMed ID: 11798163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]