BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22033873)

  • 1. Irradiation does not modify mechanical properties of cancellous bone under compression.
    Hernandez CJ; Ramsey DS; Dux SJ; Chu EH; Rimnac CM
    Clin Orthop Relat Res; 2012 Sep; 470(9):2488-95. PubMed ID: 22033873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in damage processes in dense cancellous bone following gamma-radiation sterilization.
    Dux SJ; Ramsey D; Chu EH; Rimnac CM; Hernandez CJ
    J Biomech; 2010 May; 43(8):1509-13. PubMed ID: 20172526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-Freezing Temperatures During Irradiation Preserves the Compressive Strength of Human Cortical Bone Allografts: A Cadaver Study.
    Yang Harmony TC; Yusof N; Ramalingam S; Baharin R; Syahrom A; Mansor A
    Clin Orthop Relat Res; 2022 Feb; 480(2):407-418. PubMed ID: 34491235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free radical scavenging alleviates the biomechanical impairment of gamma radiation sterilized bone tissue.
    Akkus O; Belaney RM; Das P
    J Orthop Res; 2005 Jul; 23(4):838-45. PubMed ID: 16022998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma Radiation Sterilization Reduces the High-cycle Fatigue Life of Allograft Bone.
    Islam A; Chapin K; Moore E; Ford J; Rimnac C; Akkus O
    Clin Orthop Relat Res; 2016 Mar; 474(3):827-35. PubMed ID: 26463571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture resistance of gamma radiation sterilized cortical bone allografts.
    Akkus O; Rimnac CM
    J Orthop Res; 2001 Sep; 19(5):927-34. PubMed ID: 11562143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical analysis of allograft bone treated with a novel tissue sterilization process.
    Mroz TE; Lin EL; Summit MC; Bianchi JR; Keesling JE; Roberts M; Vangsness CT; Wang JC
    Spine J; 2006; 6(1):34-9. PubMed ID: 16413445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of gamma radiation sterilization and strain rate on compressive behavior of equine cortical bone.
    Tüfekci K; Kayacan R; Kurbanoğlu C
    J Mech Behav Biomed Mater; 2014 Jun; 34():231-42. PubMed ID: 24607761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative relationships between microdamage and cancellous bone strength and stiffness.
    Hernandez CJ; Lambers FM; Widjaja J; Chapa C; Rimnac CM
    Bone; 2014 Sep; 66():205-13. PubMed ID: 24928495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage.
    Fazzalari NL; Forwood MR; Smith K; Manthey BA; Herreen P
    Bone; 1998 Apr; 22(4):381-8. PubMed ID: 9556139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone.
    Mitchell EJ; Stawarz AM; Kayacan R; Rimnac CM
    J Bone Joint Surg Am; 2004 Dec; 86(12):2648-57. PubMed ID: 15590849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of high-dose gamma irradiation on tensile properties of human cortical bone: Comparison of different radioprotective treatment methods.
    Allaveisi F; Mirzaei M
    J Mech Behav Biomed Mater; 2016 Aug; 61():475-483. PubMed ID: 27124804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of different sterilization processing methods on the mechanical properties of human cancellous bone allografts.
    Vastel L; Meunier A; Siney H; Sedel L; Courpied JP
    Biomaterials; 2004 May; 25(11):2105-10. PubMed ID: 14741625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical properties of cortical allograft bone using a new method of bone strength measurement. A comparison of fresh, fresh-frozen and irradiated bone.
    Hamer AJ; Strachan JR; Black MM; Ibbotson CJ; Stockley I; Elson RA
    J Bone Joint Surg Br; 1996 May; 78(3):363-8. PubMed ID: 8636167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical properties enhancement of gamma radiation-sterilized cortical bone using antioxidants.
    El-Hansi NS; Sallam AM; Talaat MS; Said HH; Khalaf MA; Desouky OS
    Radiat Environ Biophys; 2020 Aug; 59(3):571-581. PubMed ID: 32444954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of gamma radiation and accelerated electron beam on stable paramagnetic centers induction in bone mineral: influence of dose, irradiation temperature and bone defatting.
    Jastrzebska A; Kaminski A; Grazka E; Marowska J; Sadlo J; Gut G; Uhrynowska-Tyszkiewicz I
    Cell Tissue Bank; 2014 Sep; 15(3):413-28. PubMed ID: 24197906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The High-cycle Fatigue Life of Cortical Bone Allografts Is Radiation Sterilization Dose-dependent: An In Vitro Study.
    Ina J; Vakharia A; Akkus O; Rimnac CM
    Clin Orthop Relat Res; 2022 Jun; 480(6):1208-1219. PubMed ID: 35175232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Variable Are Achilles Allografts Used for Anterior Cruciate Ligament Reconstruction? A Biomechanical Study.
    Weber AE; Mayer EN; Nathani A; Chen DX; Kelly AM; Rodeo SA; Bedi A
    Am J Sports Med; 2018 Jul; 46(8):1870-1876. PubMed ID: 29741921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft-tissue allografts terminally sterilized with an electron beam are biomechanically equivalent to aseptic, nonsterilized tendons.
    Elenes EY; Hunter SA
    J Bone Joint Surg Am; 2014 Aug; 96(16):1321-6. PubMed ID: 25143491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of gamma irradiation on mechanical properties of human cortical bone: influence of different processing methods.
    Kaminski A; Jastrzebska A; Grazka E; Marowska J; Gut G; Wojciechowski A; Uhrynowska-Tyszkiewicz I
    Cell Tissue Bank; 2012 Aug; 13(3):363-74. PubMed ID: 22538985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.