BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 22034138)

  • 1. Epigenetics of µ-opioid receptors: intersection with HIV-1 infection of the central nervous system.
    Regan PM; Dave RS; Datta PK; Khalili K
    J Cell Physiol; 2012 Jul; 227(7):2832-41. PubMed ID: 22034138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression and HIV-1 regulation of μ-opioid receptor splice variants across human central nervous system cell types.
    Dever SM; Xu R; Fitting S; Knapp PE; Hauser KF
    J Neurovirol; 2012 Jun; 18(3):181-90. PubMed ID: 22528479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of OPRM1 Alternative Splicing by Morphine and HIV-1 Nef.
    Donadoni M; Huang W; Yarandi SS; Burdo TH; Chang SL; Sariyer IK
    J Neuroimmune Pharmacol; 2022 Jun; 17(1-2):277-288. PubMed ID: 34420144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Opioid Receptors in Immune System Function.
    Eisenstein TK
    Front Immunol; 2019; 10():2904. PubMed ID: 31921165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T394A Mutation at the μ Opioid Receptor Blocks Opioid Tolerance and Increases Vulnerability to Heroin Self-Administration in Mice.
    Wang XF; Barbier E; Chiu YT; He Y; Zhan J; Bi GH; Zhang HY; Feng B; Liu-Chen LY; Wang JB; Xi ZX
    J Neurosci; 2016 Oct; 36(40):10392-10403. PubMed ID: 27707973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of the mu opioid receptor in the human immunodeficiency virus type 1 transgenic rat model.
    Chang SL; Beltran JA; Swarup S
    J Virol; 2007 Aug; 81(16):8406-11. PubMed ID: 17553897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central HIV-1 Tat exposure elevates anxiety and fear conditioned responses of male mice concurrent with altered mu-opioid receptor-mediated G-protein activation and β-arrestin 2 activity in the forebrain.
    Hahn YK; Paris JJ; Lichtman AH; Hauser KF; Sim-Selley LJ; Selley DE; Knapp PE
    Neurobiol Dis; 2016 Aug; 92(Pt B):124-36. PubMed ID: 26845176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replacement of current opioid drugs focusing on MOR-related strategies.
    Busserolles J; Lolignier S; Kerckhove N; Bertin C; Authier N; Eschalier A
    Pharmacol Ther; 2020 Jun; 210():107519. PubMed ID: 32165137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphine disrupts macrophage functions even during HIV infection.
    Barbaro JM; Jaureguiberry-Bravo M; Sidoli S; Berman JW
    J Leukoc Biol; 2022 Nov; 112(5):1317-1328. PubMed ID: 36205434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphine-induced MOR-1X and ASF/SF2 Expressions Are Independent of Transcriptional Regulation: Implications for MOR-1X Signaling.
    Regan PM; Sariyer IK; Langford TD; Datta PK; Khalili K
    J Cell Physiol; 2016 Jul; 231(7):1542-53. PubMed ID: 26553431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functions of the chemokine receptor CXCR4 in the central nervous system and its regulation by μ-opioid receptors.
    Nash B; Meucci O
    Int Rev Neurobiol; 2014; 118():105-28. PubMed ID: 25175863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal Opioid Tolerance Depends upon Platelet-Derived Growth Factor Receptor-
    Puig S; Barker KE; Szott SR; Kann PT; Morris JS; Gutstein HB
    Mol Pharmacol; 2020 Oct; 98(4):487-496. PubMed ID: 32723769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial characterization and tissue distribution of the feline mu opiate receptor.
    Billet O; Billaud JN; Phillips TR
    Drug Alcohol Depend; 2001 Apr; 62(2):125-9. PubMed ID: 11245968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of MOR-1 exons 1-4 to morphine and heroin analgesia and dependence.
    Klein G; Rossi GC; Waxman AR; Arout C; Juni A; Inturrisi CE; Kest B
    Neurosci Lett; 2009 Jul; 457(3):115-9. PubMed ID: 19429175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. μ-Opioid receptor 6-transmembrane isoform: A potential therapeutic target for new effective opioids.
    Convertino M; Samoshkin A; Gauthier J; Gold MS; Maixner W; Dokholyan NV; Diatchenko L
    Prog Neuropsychopharmacol Biol Psychiatry; 2015 Oct; 62():61-7. PubMed ID: 25485963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of the alternatively spliced OPRM1 isoform μ-opioid receptor-1K in HIV-infected individuals.
    Dever SM; Costin BN; Xu R; El-Hage N; Balinang J; Samoshkin A; O'Brien MA; McRae M; Diatchenko L; Knapp PE; Hauser KF
    AIDS; 2014 Jan; 28(1):19-30. PubMed ID: 24413261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Regulation of 6- and 7-Transmembrane Helix Variants of μ-Opioid Receptor in Response to Morphine Stimulation.
    Convertino M; Samoshkin A; Viet CT; Gauthier J; Li Fraine SP; Sharif-Naeini R; Schmidt BL; Maixner W; Diatchenko L; Dokholyan NV
    PLoS One; 2015; 10(11):e0142826. PubMed ID: 26554831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioral and molecular evidence for a feedback interaction between morphine and HIV-1 viral proteins.
    Chang SL; Connaghan KP
    J Neuroimmune Pharmacol; 2012 Jun; 7(2):332-40. PubMed ID: 22083500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIV-1 gp120 up-regulation of the mu opioid receptor in TPA-differentiated HL-60 cells.
    Beltran JA; Pallur A; Chang SL
    Int Immunopharmacol; 2006 Sep; 6(9):1459-67. PubMed ID: 16846840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. μ-Opioid receptors in primary sensory neurons are essential for opioid analgesic effect on acute and inflammatory pain and opioid-induced hyperalgesia.
    Sun J; Chen SR; Chen H; Pan HL
    J Physiol; 2019 Mar; 597(6):1661-1675. PubMed ID: 30578671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.