These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 22034436)
1. Fatty acids identified in the Burmese python promote beneficial cardiac growth. Riquelme CA; Magida JA; Harrison BC; Wall CE; Marr TG; Secor SM; Leinwand LA Science; 2011 Oct; 334(6055):528-31. PubMed ID: 22034436 [TBL] [Abstract][Full Text] [Related]
2. Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation. Wall CE; Cozza S; Riquelme CA; McCombie WR; Heimiller JK; Marr TG; Leinwand LA Physiol Genomics; 2011 Jan; 43(2):69-76. PubMed ID: 21045117 [TBL] [Abstract][Full Text] [Related]
3. Reduction of blood oxygen levels enhances postprandial cardiac hypertrophy in Burmese python (Python bivittatus). Slay CE; Enok S; Hicks JW; Wang T J Exp Biol; 2014 May; 217(Pt 10):1784-9. PubMed ID: 24311803 [TBL] [Abstract][Full Text] [Related]
4. Regression of postprandial cardiac hypertrophy in burmese pythons is mediated by FoxO1. Martin TG; Hunt DR; Langer SJ; Tan Y; Ebmeier CC; Leinwand LA Proc Natl Acad Sci U S A; 2024 Oct; 121(41):e2408719121. PubMed ID: 39352930 [TBL] [Abstract][Full Text] [Related]
6. Utility of the burmese Python as a model for studying plasticity of extreme physiological systems. Tan Y; Martin TG; Harrison BC; Leinwand LA J Muscle Res Cell Motil; 2023 Jun; 44(2):95-106. PubMed ID: 36316565 [TBL] [Abstract][Full Text] [Related]
7. Effects of meal size on postprandial responses in juvenile Burmese pythons (Python molurus). Secor SM; Diamond J Am J Physiol; 1997 Mar; 272(3 Pt 2):R902-12. PubMed ID: 9087654 [TBL] [Abstract][Full Text] [Related]
8. Effects of fatty acids on uncoupling protein-2 expression in the rat heart. Van Der Lee KA; Willemsen PH; Van Der Vusse GJ; Van Bilsen M FASEB J; 2000 Mar; 14(3):495-502. PubMed ID: 10698964 [TBL] [Abstract][Full Text] [Related]
9. Change of cardiac function, but not form, in postprandial pythons. Jensen B; Larsen CK; Nielsen JM; Simonsen LS; Wang T Comp Biochem Physiol A Mol Integr Physiol; 2011 Sep; 160(1):35-42. PubMed ID: 21605694 [TBL] [Abstract][Full Text] [Related]
10. Burmese pythons exhibit a transient adaptation to nutrient overload that prevents liver damage. Magida JA; Tan Y; Wall CE; Harrison BC; Marr TG; Peter AK; Riquelme CA; Leinwand LA J Gen Physiol; 2022 Apr; 154(4):. PubMed ID: 35323838 [TBL] [Abstract][Full Text] [Related]
11. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Thomsen C; Rasmussen O; Lousen T; Holst JJ; Fenselau S; Schrezenmeir J; Hermansen K Am J Clin Nutr; 1999 Jun; 69(6):1135-43. PubMed ID: 10357731 [TBL] [Abstract][Full Text] [Related]
12. Postprandial morphological response of the intestinal epithelium of the Burmese python (Python molurus). Lignot JH; Helmstetter C; Secor SM Comp Biochem Physiol A Mol Integr Physiol; 2005 Jul; 141(3):280-91. PubMed ID: 16002308 [TBL] [Abstract][Full Text] [Related]
13. Selected regulation of gastrointestinal acid-base secretion and tissue metabolism for the diamondback water snake and Burmese python. Secor SM; Taylor JR; Grosell M J Exp Biol; 2012 Jan; 215(Pt 1):185-96. PubMed ID: 22162867 [TBL] [Abstract][Full Text] [Related]
14. Selective partitioning of dietary fatty acids into the VLDL TG pool in the early postprandial period. Heath RB; Karpe F; Milne RW; Burdge GC; Wootton SA; Frayn KN J Lipid Res; 2003 Nov; 44(11):2065-72. PubMed ID: 12923230 [TBL] [Abstract][Full Text] [Related]
15. Prioritizing blood flow: cardiovascular performance in response to the competing demands of locomotion and digestion for the Burmese python, Python molurus. Secor SM; White SE J Exp Biol; 2010 Jan; 213(1):78-88. PubMed ID: 20008365 [TBL] [Abstract][Full Text] [Related]
16. Changes in fatty acid composition of myocardial triglyceride following a single administration of ethanol to rabbits. Kako KJ; Liu MS; Thornton MJ J Mol Cell Cardiol; 1973 Oct; 5(5):473-89. PubMed ID: 4762147 [No Abstract] [Full Text] [Related]
17. Humoral regulation of heart rate during digestion in pythons (Python molurus and Python regius). Enok S; Simonsen LS; Pedersen SV; Wang T; Skovgaard N Am J Physiol Regul Integr Comp Physiol; 2012 May; 302(10):R1176-83. PubMed ID: 22422667 [TBL] [Abstract][Full Text] [Related]
18. Matched regulation of gastrointestinal performance in the Burmese python, Python molurus. Cox CL; Secor SM J Exp Biol; 2008 Apr; 211(Pt 7):1131-40. PubMed ID: 18344488 [TBL] [Abstract][Full Text] [Related]
19. In obese Zucker rats, lipids accumulate in the heart despite normal mitochondrial content, morphology and long-chain fatty acid oxidation. Holloway GP; Snook LA; Harris RJ; Glatz JF; Luiken JJ; Bonen A J Physiol; 2011 Jan; 589(Pt 1):169-80. PubMed ID: 21041527 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome analysis of the response of Burmese python to digestion. Duan J; Sanggaard KW; Schauser L; Lauridsen SE; Enghild JJ; Schierup MH; Wang T Gigascience; 2017 Aug; 6(8):1-18. PubMed ID: 28873961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]