BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22034740)

  • 1. A study of the relationship between process conditions and mechanical strength of mineralized red algae in the preparation of a marine-derived bone void filler.
    Walsh PJ; Walker GM; Maggs CA; Buchanan FJ
    Proc Inst Mech Eng H; 2011 Jun; 225(6):563-74. PubMed ID: 22034740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal preparation of highly porous calcium phosphate bone filler derived from marine algae.
    Walsh PJ; Walker GM; Maggs CA; Buchanan FJ
    J Mater Sci Mater Med; 2010 Aug; 21(8):2281-6. PubMed ID: 20333540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication, chemical composition change and phase evolution of biomorphic hydroxyapatite.
    Qian J; Kang Y; Zhang W; Li Z
    J Mater Sci Mater Med; 2008 Nov; 19(11):3373-83. PubMed ID: 18545942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How calcite and modified hydroxyapatite influence physicochemical properties and cytocompatibility of alpha-TCP based bone cements.
    Zima A; Czechowska J; Siek D; Olkowski R; Noga M; Lewandowska-Szumieł M; Ślósarczyk A
    J Mater Sci Mater Med; 2017 Aug; 28(8):117. PubMed ID: 28681217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-tricalcium phosphate and octacalcium phosphate composite bioceramic material for bone tissue engineering.
    Ding X; Li A; Yang F; Sun K; Sun X
    J Biomater Appl; 2020 Apr; 34(9):1294-1299. PubMed ID: 32028822
    [No Abstract]   [Full Text] [Related]  

  • 6. Preparation and characterization of calcium phosphate biomaterials.
    Calafiori AR; Di Marco G; Martino G; Marotta M
    J Mater Sci Mater Med; 2007 Dec; 18(12):2331-8. PubMed ID: 17569008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical properties of the novel biphasic hydroxyapatite-magnesium phosphate biomaterial.
    Pijocha D; Zima A; Paszkiewicz Z; Ślósarczyk A
    Acta Bioeng Biomech; 2013; 15(3):53-63. PubMed ID: 24215450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation, physical-chemical characterisation and cytocompatibility of calcium carbonate cements.
    Combes C; Miao B; Bareille R; Rey C
    Biomaterials; 2006 Mar; 27(9):1945-54. PubMed ID: 16219345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and mechanical testing of porous calcium phosphate bioceramic granules.
    Hsu YH; Turner IG; Miles AW
    J Mater Sci Mater Med; 2007 Oct; 18(10):1931-7. PubMed ID: 17554596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing.
    Asadi-Eydivand M; Solati-Hashjin M; Shafiei SS; Mohammadi S; Hafezi M; Abu Osman NA
    PLoS One; 2016; 11(3):e0151216. PubMed ID: 26999789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones.
    Rocha JH; Lemos AF; Agathopoulos S; Kannan S; Valério P; Ferreira JM
    J Biomed Mater Res A; 2006 Apr; 77(1):160-8. PubMed ID: 16392140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution.
    Gandolfi MG; Taddei P; Siboni F; Modena E; Ginebra MP; Prati C
    Int Endod J; 2011 Oct; 44(10):938-49. PubMed ID: 21726240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique.
    El-Ghannam A; Hart A; White D; Cunningham L
    J Biomed Mater Res A; 2013 Oct; 101(10):2851-61. PubMed ID: 23504981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low temperature method for the production of calcium phosphate fillers.
    Calafiori AR; Marotta M; Nastro A; Martino G
    Biomed Eng Online; 2004 Mar; 3(1):8. PubMed ID: 15035671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium phosphate bioceramics fabricated from extracted human teeth for tooth tissue engineering.
    Lim KT; Suh JD; Kim J; Choung PH; Chung JH
    J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):399-411. PubMed ID: 21953824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction.
    Combes C; Bareille R; Rey C
    J Biomed Mater Res A; 2006 Nov; 79(2):318-28. PubMed ID: 16817210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste.
    Almirall A; Larrecq G; Delgado JA; Martínez S; Planell JA; Ginebra MP
    Biomaterials; 2004 Aug; 25(17):3671-80. PubMed ID: 15020142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcing of a calcium phosphate cement with hydroxyapatite crystals of various morphologies.
    Neira IS; Kolen'ko YV; Kommareddy KP; Manjubala I; Yoshimura M; Guitián F
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3276-84. PubMed ID: 21038864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonate release from carbonated hydroxyapatite in the wide temperature rage.
    Barinov SM; Rau JV; Cesaro SN; Durisin J; Fadeeva IV; Ferro D; Medvecky L; Trionfetti G
    J Mater Sci Mater Med; 2006 Jul; 17(7):597-604. PubMed ID: 16770543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.