These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2203477)

  • 41. The biosynthesis of the thiazole moiety of thiamine in Salmonella Typhimurium.
    Bellion E; Kirkley DH; Faust JR
    Biochim Biophys Acta; 1976 Jun; 437(1):229-37. PubMed ID: 779848
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A HPLC method for simultaneous determination of 5-aminoimidazole-4-carboxamide riboside and its active metabolite 5-aminoimidazole-4-carboxamide ribotide in tumor-bearing nude mice plasma and its application to pharmacokinetics study.
    Cheng X; Guo L; Li Z; Li L; Zhou T; Lu W
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Feb; 915-916():64-70. PubMed ID: 23340307
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involvement of the oxidative pentose phosphate pathway in thiamine biosynthesis in Salmonella typhimurium.
    Enos-Berlage JL; Downs DM
    J Bacteriol; 1996 Mar; 178(5):1476-9. PubMed ID: 8631729
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The control mechanism of thiamine biosynthesis a model for the study of control of converging pathways.
    Newell PC; Tucker RG
    Biochem J; 1966 Aug; 100(2):517-24. PubMed ID: 5338808
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Incorporation of 4-amino-5-hydroxymethylpyrimidine into thiamine by microorganisms.
    White RH
    Science; 1981 Nov; 214(4522):797-8. PubMed ID: 6794148
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel involvement of the PurG and PurI proteins in thiamine synthesis via the alternative pyrimidine biosynthetic (APB) pathway in Salmonella typhimurium.
    Zilles JL; Downs DM
    Genetics; 1996 Nov; 144(3):883-92. PubMed ID: 8913735
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibition of aminoimidazole ribotide biosynthesis in Salmonella typhimurium by aminotriazole.
    Hulanicka D; Klopotowski T; Bagdasarian G
    Acta Biochim Pol; 1969; 16(2):127-33. PubMed ID: 4899644
    [No Abstract]   [Full Text] [Related]  

  • 48. Analysis of ThiC variants in the context of the metabolic network of Salmonella enterica.
    Palmer LD; Dougherty MJ; Downs DM
    J Bacteriol; 2012 Nov; 194(22):6088-95. PubMed ID: 22961850
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production of a precursor to the pyrimidine moiety of thiamine.
    Rubin HE; Love SH
    Appl Environ Microbiol; 1976 Jun; 31(6):936-41. PubMed ID: 779649
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thiamine pyrophosphate (TPP) negatively regulates transcription of some thi genes of Salmonella typhimurium.
    Webb E; Febres F; Downs DM
    J Bacteriol; 1996 May; 178(9):2533-8. PubMed ID: 8626319
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transport of thiamine and 4-methyl-5-hydroxyethylthiazole by Salmonella typhimurium.
    Bellion E; Lash TD; McKellar BR
    Biochim Biophys Acta; 1983 Nov; 735(3):331-6. PubMed ID: 6357278
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The origin of the sulfur atom of thiamin.
    Tazuya K; Yamada K; Nakamura K; Kumaoka H
    Biochim Biophys Acta; 1987 Apr; 924(1):210-5. PubMed ID: 3103694
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ZTP (5-amino 4-imidazole carboxamide riboside 5'-triphosphate): a proposed alarmone for 10-formyl-tetrahydrofolate deficiency.
    Bochner BR; Ames BN
    Cell; 1982 Jul; 29(3):929-37. PubMed ID: 6185232
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonenzymatic synthesis of 5-aminoimidazole ribonucleoside and recognition of its facile rearrangement.
    Groziak MP; Bhat B; Leonard NJ
    Proc Natl Acad Sci U S A; 1988 Oct; 85(19):7174-6. PubMed ID: 3174626
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic regulation in Streptomyces parvulus during actinomycin D synthesis, studied with 13C- and 15N-labeled precursors by 13C and 15N nuclear magnetic resonance spectroscopy and by gas chromatography-mass spectrometry.
    Inbar L; Lapidot A
    J Bacteriol; 1988 Sep; 170(9):4055-64. PubMed ID: 3410824
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A short path synthesis of [13C/15N] multilabeled pyrimidine nucleosides starting from glucopyranose nucleosides.
    Lagoja IM; Pochet S; Boudou V; Little R; Lescrinier E; Rozenski J; Herdewijn P
    J Org Chem; 2003 Mar; 68(5):1867-71. PubMed ID: 12608803
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The de-repression of thiamine biosynthesis by adenosine a tool for investigating this biosynthetic pathway.
    Newell PC; Tucker RG
    Biochem J; 1966 Aug; 100(2):512-6. PubMed ID: 5338807
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Biosynthesis of the Thiazole Moiety of Thiamin in the Archaeon Halobacterium salinarum.
    Hayashi M; Kijima Y; Tazuya-Murayama K; Yamada K
    J Nutr Sci Vitaminol (Tokyo); 2015; 61(3):270-4. PubMed ID: 26226965
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosynthesis of vitamin B1 in yeast. Derivation of the pyrimidine unit from pyridoxine and histidine. Intermediacy of urocanic acid.
    Zeidler J; Sayer BG; Spenser ID
    J Am Chem Soc; 2003 Oct; 125(43):13094-105. PubMed ID: 14570482
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of purine biosynthetic intermediates in response to folate stress in Escherichia coli.
    Rohlman CE; Matthews RG
    J Bacteriol; 1990 Dec; 172(12):7200-10. PubMed ID: 2254281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.