BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22035287)

  • 1. Focused beam reflectance method as an innovative (PAT) tool to monitor in-line granulation process in fluidized bed.
    Alshihabi F; Vandamme T; Betz G
    Pharm Dev Technol; 2013 Feb; 18(1):73-84. PubMed ID: 22035287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study growth kinetics in fluidized bed granulation with at-line FBRM.
    Hu X; Cunningham JC; Winstead D
    Int J Pharm; 2008 Jan; 347(1-2):54-61. PubMed ID: 17689213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of granule growth kinetics during in situ fluid bed melt granulation using in-line FBRM and SFT probes.
    Kukec S; Hudovornik G; Dreu R; Vrečer F
    Drug Dev Ind Pharm; 2014 Jul; 40(7):952-9. PubMed ID: 23662716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of In-line Focused Beam Reflectance Measurement to Brivanib Alaninate Wet Granulation Process to Enable Scale-up and Attribute-based Monitoring and Control Strategies.
    Narang AS; Stevens T; Macias K; Paruchuri S; Gao Z; Badawy S
    J Pharm Sci; 2017 Jan; 106(1):224-233. PubMed ID: 27771049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A PAT approach to improve process understanding of high shear wet granulation through in-line particle measurement using FBRM C35.
    Huang J; Kaul G; Utz J; Hernandez P; Wong V; Bradley D; Nagi A; O'Grady D
    J Pharm Sci; 2010 Jul; 99(7):3205-12. PubMed ID: 20186936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution and Sensitivity of Inline Focused Beam Reflectance Measurement During Wet Granulation in Pharmaceutically Relevant Particle Size Ranges.
    Narang AS; Stevens T; Hubert M; Paruchuri S; Macias K; Bindra D; Gao Z; Badawy S
    J Pharm Sci; 2016 Dec; 105(12):3594-3602. PubMed ID: 27745886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation into the effect of formulation variables and process parameters on characteristics of granules obtained by in situ fluidized hot melt granulation.
    Mašić I; Ilić I; Dreu R; Ibrić S; Parojčić J; Durić Z
    Int J Pharm; 2012 Feb; 423(2):202-12. PubMed ID: 22197773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melt granulation in fluidized bed: a comparative study of spray-on versus in situ procedure.
    Mašić I; Ilić I; Dreu R; Ibrić S; Parojčić J; Srčič S
    Drug Dev Ind Pharm; 2014 Jan; 40(1):23-32. PubMed ID: 23294368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico modeling of in situ fluidized bed melt granulation.
    Aleksić I; Duriš J; Ilić I; Ibrić S; Parojčić J; Srčič S
    Int J Pharm; 2014 May; 466(1-2):21-30. PubMed ID: 24607215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Process optimization for continuous extrusion wet granulation.
    Tan L; Carella AJ; Ren Y; Lo JB
    Pharm Dev Technol; 2011 Aug; 16(4):302-15. PubMed ID: 20367553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time assessment of granule densification in high shear wet granulation and application to scale-up of a placebo and a brivanib alaninate formulation.
    Narang AS; Sheverev VA; Stepaniuk V; Badawy S; Stevens T; Macias K; Wolf A; Pandey P; Bindra D; Varia S
    J Pharm Sci; 2015 Mar; 104(3):1019-34. PubMed ID: 25470221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time particle size analysis using focused beam reflectance measurement as a process analytical technology tool for a continuous granulation-drying-milling process.
    Kumar V; Taylor MK; Mehrotra A; Stagner WC
    AAPS PharmSciTech; 2013 Jun; 14(2):523-30. PubMed ID: 23435807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous wet granulation using fluidized-bed techniques. I. Examination of powder mixing kinetics and preliminary granulation experiments.
    Gotthardt S; Knoch A; Lee G
    Eur J Pharm Biopharm; 1999 Nov; 48(3):189-97. PubMed ID: 10612029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of binder droplet dimension on granulation rate during fluidized bed granulation.
    Fujiwara M; Dohi M; Otsuka T; Yamashita K; Sako K
    Chem Pharm Bull (Tokyo); 2013; 61(3):320-5. PubMed ID: 23449201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring granulation rate processes using three PAT tools in a pilot-scale fluidized bed.
    Tok AT; Goh X; Ng WK; Tan RB
    AAPS PharmSciTech; 2008; 9(4):1083-91. PubMed ID: 18850276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roll compaction/dry granulation: comparison between roll mill and oscillating granulator in dry granulation.
    Sakwanichol J; Puttipipatkhachorn S; Ingenerf G; Kleinebudde P
    Pharm Dev Technol; 2012; 17(1):30-9. PubMed ID: 20731538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: A review.
    Burggraeve A; Monteyne T; Vervaet C; Remon JP; De Beer T
    Eur J Pharm Biopharm; 2013 Jan; 83(1):2-15. PubMed ID: 23041243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A qualitative method for monitoring of nucleation and granule growth in fluid bed wet granulation by reflectance near-infrared spectroscopy.
    Li W; Cunningham J; Rasmussen H; Winstead D
    J Pharm Sci; 2007 Dec; 96(12):3470-7. PubMed ID: 17549771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous twin screw granulation: influence of process variables on granule and tablet quality.
    Vercruysse J; Córdoba Díaz D; Peeters E; Fonteyne M; Delaet U; Van Assche I; De Beer T; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2012 Sep; 82(1):205-11. PubMed ID: 22687571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation and comparison of a moist granulation technique to conventional methods.
    Railkar AM; Schwartz JB
    Drug Dev Ind Pharm; 2000 Aug; 26(8):885-9. PubMed ID: 10900546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.