These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22035328)

  • 41. Solution structure of a conserved DNA sequence from the HIV-1 genome: restrained molecular dynamics simulation with distance and torsion angle restraints derived from two-dimensional NMR spectra.
    Mujeeb A; Kerwin SM; Kenyon GL; James TL
    Biochemistry; 1993 Dec; 32(49):13419-31. PubMed ID: 8257678
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A calculation strategy for the structure determination of symmetric dimers by 1H NMR.
    Nilges M
    Proteins; 1993 Nov; 17(3):297-309. PubMed ID: 8272427
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-resolution protein structure determination starting with a global fold calculated from exact solutions to the RDC equations.
    Zeng J; Boyles J; Tripathy C; Wang L; Yan A; Zhou P; Donald BR
    J Biomol NMR; 2009 Nov; 45(3):265-81. PubMed ID: 19711185
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structures of protein-protein complexes are docked using only NMR restraints from residual dipolar coupling and chemical shift perturbations.
    McCoy MA; Wyss DF
    J Am Chem Soc; 2002 Mar; 124(10):2104-5. PubMed ID: 11878950
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solution structures of the R6 human insulin hexamer,
    Chang X; Jorgensen AM; Bardrum P; Led JJ
    Biochemistry; 1997 Aug; 36(31):9409-22. PubMed ID: 9235985
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fast methionine-based solution structure determination of calcium-calmodulin complexes.
    Gifford JL; Ishida H; Vogel HJ
    J Biomol NMR; 2011 May; 50(1):71-81. PubMed ID: 21360154
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A polynomial-time algorithm for de novo protein backbone structure determination from nuclear magnetic resonance data.
    Wang L; Mettu RR; Donald BR
    J Comput Biol; 2006 Sep; 13(7):1267-88. PubMed ID: 17037958
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The solution structure of the Tyr41-->His mutant of the single-stranded DNA binding protein encoded by gene V of the filamentous bacteriophage M13.
    Folkers PJ; Nilges M; Folmer RH; Konings RN; Hilbers CW
    J Mol Biol; 1994 Feb; 236(1):229-46. PubMed ID: 8107108
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Systematic solution to homo-oligomeric structures determined by NMR.
    Martin JW; Zhou P; Donald BR
    Proteins; 2015 Apr; 83(4):651-61. PubMed ID: 25620116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Validation of protein backbone structures calculated from NMR angular restraints using Rosetta.
    Lapin J; Nevzorov AA
    J Biomol NMR; 2019 May; 73(5):229-244. PubMed ID: 31076969
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein structure prediction using sparse NOE and RDC restraints with Rosetta in CASP13.
    Kuenze G; Meiler J
    Proteins; 2019 Dec; 87(12):1341-1350. PubMed ID: 31292988
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Determination of a high precision structure of a novel protein, Linum usitatissimum trypsin inhibitor (LUTI), using computer-aided assignment of NOESY cross-peaks.
    Cierpicki T; Otlewski J
    J Mol Biol; 2000 Oct; 302(5):1179-92. PubMed ID: 11183783
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein Structure Elucidation from NMR Data with the Program Xplor-NIH.
    Bermejo GA; Schwieters CD
    Methods Mol Biol; 2018; 1688():311-340. PubMed ID: 29151215
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A target function for quaternary structural refinement from small angle scattering and NMR orientational restraints.
    Gabel F; Simon B; Sattler M
    Eur Biophys J; 2006 Apr; 35(4):313-27. PubMed ID: 16416140
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data.
    van Nuland NA; Boelens R; Scheek RM; Robillard GT
    J Mol Biol; 1995 Feb; 246(1):180-93. PubMed ID: 7853396
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A polynomial-time nuclear vector replacement algorithm for automated NMR resonance assignments.
    Langmead CJ; Yan A; Lilien R; Wang L; Donald BR
    J Comput Biol; 2004; 11(2-3):277-98. PubMed ID: 15285893
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein loop closure using orientational restraints from NMR data.
    Tripathy C; Zeng J; Zhou P; Donald BR
    Proteins; 2012 Feb; 80(2):433-53. PubMed ID: 22161780
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving the accuracy of NMR structures of DNA by means of a database potential of mean force describing base-base positional interactions.
    Kuszewski J; Schwieters C; Clore GM
    J Am Chem Soc; 2001 May; 123(17):3903-18. PubMed ID: 11457140
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Paramagnetic-based NMR restraints lift residual dipolar coupling degeneracy in multidomain detergent-solubilized membrane proteins.
    Shi L; Traaseth NJ; Verardi R; Gustavsson M; Gao J; Veglia G
    J Am Chem Soc; 2011 Feb; 133(7):2232-41. PubMed ID: 21287984
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin.
    Nilges M; Macias MJ; O'Donoghue SI; Oschkinat H
    J Mol Biol; 1997 Jun; 269(3):408-22. PubMed ID: 9199409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.