These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 2203536)

  • 41. Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+.
    Gautier J; Norbury C; Lohka M; Nurse P; Maller J
    Cell; 1988 Jul; 54(3):433-9. PubMed ID: 3293803
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Membrane localization of the kinase which phosphorylates p34cdc2 on threonine 14.
    Kornbluth S; Sebastian B; Hunter T; Newport J
    Mol Biol Cell; 1994 Mar; 5(3):273-82. PubMed ID: 8049520
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chromosome replication in cell-free systems from Xenopus eggs.
    Blow JJ; Dilworth SM; Dingwall C; Mills AD; Laskey RA
    Philos Trans R Soc Lond B Biol Sci; 1987 Dec; 317(1187):483-94. PubMed ID: 2894683
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Association of p34cdc2 kinase and MAP kinase with microtubules during the meiotic maturation of Xenopus oocytes.
    Fellous A; Kubelka M; Thibier C; Taieb F; Haccard O; Jessus C
    Int J Dev Biol; 1994 Dec; 38(4):651-9. PubMed ID: 7779687
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of protein phosphorylation in the assembly of a replication competent nucleus: investigations in Xenopus egg extracts using the cyanobacterial toxin microcystin-LR.
    Murphy J; Crompton CM; Hainey S; Codd GA; Hutchison CJ
    J Cell Sci; 1995 Jan; 108 ( Pt 1)():235-44. PubMed ID: 7738100
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An inhibitor of p34cdc2/cyclin B that regulates the G2/M transition in Xenopus extracts.
    Lee TH; Kirschner MW
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):352-6. PubMed ID: 8552637
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Xkid chromokinesin is required for the meiosis I to meiosis II transition in Xenopus laevis oocytes.
    Perez LH; Antonio C; Flament S; Vernos I; Nebreda AR
    Nat Cell Biol; 2002 Oct; 4(10):737-42. PubMed ID: 12360284
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An analysis of the regulation of DNA synthesis by cdk2, Cip1, and licensing factor.
    Yan H; Newport J
    J Cell Biol; 1995 Apr; 129(1):1-15. PubMed ID: 7698977
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mitotic repression of transcription in vitro.
    Hartl P; Gottesfeld J; Forbes DJ
    J Cell Biol; 1993 Feb; 120(3):613-24. PubMed ID: 8381119
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15.
    Mueller PR; Coleman TR; Kumagai A; Dunphy WG
    Science; 1995 Oct; 270(5233):86-90. PubMed ID: 7569953
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Xe-p9, a Xenopus Suc1/Cks protein, is essential for the Cdc2-dependent phosphorylation of the anaphase- promoting complex at mitosis.
    Patra D; Dunphy WG
    Genes Dev; 1998 Aug; 12(16):2549-59. PubMed ID: 9716407
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts.
    Guo Z; Kumagai A; Wang SX; Dunphy WG
    Genes Dev; 2000 Nov; 14(21):2745-56. PubMed ID: 11069891
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activation of the p42 mitogen-activated protein kinase pathway inhibits Cdc2 activation and entry into M-phase in cycling Xenopus egg extracts.
    Bitangcol JC; Chau AS; Stadnick E; Lohka MJ; Dicken B; Shibuya EK
    Mol Biol Cell; 1998 Feb; 9(2):451-67. PubMed ID: 9450967
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aphidicolin-sensitive DNA polymerase is incorporated into the chromatin during nuclear envelope assembly in Xenopus egg extract.
    Takasuga Y; Murata M; Yamashita J; Andoh T; Yagura T
    Exp Cell Res; 1995 Jul; 219(1):283-91. PubMed ID: 7628544
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Purification of MPF from starfish: identification as the H1 histone kinase p34cdc2 and a possible mechanism for its periodic activation.
    Labbe JC; Picard A; Peaucellier G; Cavadore JC; Nurse P; Doree M
    Cell; 1989 Apr; 57(2):253-63. PubMed ID: 2649251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of peptides from p21 (Waf1/Cip1) to investigate PCNA function in Xenopus egg extracts.
    Mattock H; Jares P; Zheleva DI; Lane DP; Warbrick E; Blow JJ
    Exp Cell Res; 2001 May; 265(2):242-51. PubMed ID: 11302689
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microtubule assembly in clarified Xenopus egg extracts.
    Parsons SF; Salmon ED
    Cell Motil Cytoskeleton; 1997; 36(1):1-11. PubMed ID: 8986373
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Scc2 couples replication licensing to sister chromatid cohesion in Xenopus egg extracts.
    Gillespie PJ; Hirano T
    Curr Biol; 2004 Sep; 14(17):1598-603. PubMed ID: 15341749
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A role for cAMP-dependent protein kinase in early embryonic divisions.
    Grieco D; Avvedimento EV; Gottesman ME
    Proc Natl Acad Sci U S A; 1994 Oct; 91(21):9896-900. PubMed ID: 7937913
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dual inhibition of Cdc2 protein kinase activation during apoptosis in Xenopus egg extracts.
    Tsuchiya Y; Murai S; Yamashita S
    FEBS J; 2015 Apr; 282(7):1256-70. PubMed ID: 25631627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.