BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22035421)

  • 1. Effects of the landscape on boreal toad gene flow: does the pattern-process relationship hold true across distinct landscapes at the northern range margin?
    Moore JA; Tallmon DA; Nielsen J; Pyare S
    Mol Ecol; 2011 Dec; 20(23):4858-69. PubMed ID: 22035421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine-scale population structure in a desert amphibian: landscape genetics of the black toad (Bufo exsul).
    Wang IJ
    Mol Ecol; 2009 Sep; 18(18):3847-56. PubMed ID: 19708887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene flow and functional connectivity in the natterjack toad.
    Stevens VM; Verkenne C; Vandewoestijne S; Wesselingh RA; Baguette M
    Mol Ecol; 2006 Aug; 15(9):2333-44. PubMed ID: 16842409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Habitat distribution influences dispersal and fine-scale genetic population structure of eastern foxsnakes (Mintonius gloydi) across a fragmented landscape.
    Row JR; Blouin-Demers G; Lougheed SC
    Mol Ecol; 2010 Dec; 19(23):5157-71. PubMed ID: 20977510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do landscape processes predict phylogeographic patterns in the wood frog?
    Lee-Yaw JA; Davidson A; McRae BH; Green DM
    Mol Ecol; 2009 May; 18(9):1863-74. PubMed ID: 19302465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach.
    Braunisch V; Segelbacher G; Hirzel AH
    Mol Ecol; 2010 Sep; 19(17):3664-78. PubMed ID: 20723058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Landscape genetic structure of coastal tailed frogs (Ascaphus truei) in protected vs. managed forests.
    Spear SF; Storfer A
    Mol Ecol; 2008 Nov; 17(21):4642-56. PubMed ID: 19140987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disrupted fine-scale population processes in fragmented landscapes despite large-scale genetic connectivity for a widespread and common cooperative breeder: the superb fairy-wren (Malurus cyaneus).
    Harrisson KA; Pavlova A; Amos JN; Takeuchi N; Lill A; Radford JQ; Sunnucks P
    J Anim Ecol; 2013 Mar; 82(2):322-33. PubMed ID: 23190389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus).
    Pérez-Espona S; Pérez-Barbería FJ; McLeod JE; Jiggins CD; Gordon IJ; Pemberton JM
    Mol Ecol; 2008 Feb; 17(4):981-96. PubMed ID: 18261043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying past and present connectivity illuminates a rapidly changing landscape for the African elephant.
    Epps CW; Wasser SK; Keim JL; Mutayoba BM; Brashares JS
    Mol Ecol; 2013 Mar; 22(6):1574-88. PubMed ID: 23398457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rangewide landscape genetics of an endemic Pacific northwestern salamander.
    Trumbo DR; Spear SF; Baumsteiger J; Storfer A
    Mol Ecol; 2013 Mar; 22(5):1250-66. PubMed ID: 23293948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of landscape and life history attributes on genetic diversity, neutral divergence and gene flow in a pristine community of salmonids.
    Gomez-Uchida D; Knight TW; Ruzzante DE
    Mol Ecol; 2009 Dec; 18(23):4854-69. PubMed ID: 19878451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of multiple dispersal mechanisms and landscape structure on population clustering and connectivity in fragmented artesian spring snail populations.
    Worthington Wilmer J; Elkin C; Wilcox C; Murray L; Niejalke D; Possingham H
    Mol Ecol; 2008 Aug; 17(16):3733-51. PubMed ID: 18643884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape.
    Purrenhage JL; Niewiarowski PH; Moore FB
    Mol Ecol; 2009 Jan; 18(2):235-47. PubMed ID: 19192178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the risk of invasive spread in fragmented landscapes.
    With KA
    Risk Anal; 2004 Aug; 24(4):803-15. PubMed ID: 15357801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A landscape genetics approach for quantifying the relative influence of historic and contemporary habitat heterogeneity on the genetic connectivity of a rainforest bird.
    Pavlacky DC; Goldizen AW; Prentis PJ; Nicholls JA; Lowe AJ
    Mol Ecol; 2009 Jul; 18(14):2945-60. PubMed ID: 19549110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Landscape discontinuities influence gene flow and genetic structure in a large, vagile Australian mammal, Macropus fuliginosus.
    Neaves LE; Zenger KR; Prince RI; Eldridge MD; Cooper DW
    Mol Ecol; 2009 Aug; 18(16):3363-78. PubMed ID: 19659477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling.
    Cushman SA; McKelvey KS; Hayden J; Schwartz MK
    Am Nat; 2006 Oct; 168(4):486-99. PubMed ID: 17004220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis.
    Spear SF; Balkenhol N; Fortin MJ; McRae BH; Scribner K
    Mol Ecol; 2010 Sep; 19(17):3576-91. PubMed ID: 20723064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of landscape on gene flow in the eastern massasauga rattlesnake (Sistrurus c. catenatus): insight from computer simulations.
    Dileo MF; Rouse JD; Dávila JA; Lougheed SC
    Mol Ecol; 2013 Sep; 22(17):4483-98. PubMed ID: 23889682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.