BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22035791)

  • 21. Localization of the binding site for the 3'-terminal sequence of tRNAPhe in subunits of phenylalanyl-tRNA synthetase from Thermus thermophilus.
    Moor NA; Ankilova VN; Favre A; Lavrik OI
    Biochemistry (Mosc); 1998 Sep; 63(9):1051-6. PubMed ID: 9795274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-scale movement of functional domains facilitates aminoacylation by human mitochondrial phenylalanyl-tRNA synthetase.
    Yadavalli SS; Klipcan L; Zozulya A; Banerjee R; Svergun D; Safro M; Ibba M
    FEBS Lett; 2009 Oct; 583(19):3204-8. PubMed ID: 19737557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of T. thermophilus phenylalanyl-tRNA synthetase with the 3'-terminal nucleotide of tRNAPhe.
    Vasil'eva IA; Ankilova VN; Lavrik OI; Moor NA
    Biochemistry (Mosc); 2000 Oct; 65(10):1157-66. PubMed ID: 11092959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loss of editing activity during the evolution of mitochondrial phenylalanyl-tRNA synthetase.
    Roy H; Ling J; Alfonzo J; Ibba M
    J Biol Chem; 2005 Nov; 280(46):38186-92. PubMed ID: 16162501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recognition of tRNAPhe by phenylalanyl-tRNA synthetase of Thermus thermophilus.
    Moor NA; Ankilova VN; Lavrik OI
    Eur J Biochem; 1995 Dec; 234(3):897-902. PubMed ID: 8575450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of human mitochondrial PheRS complexed with tRNA(Phe) in the active "open" state.
    Klipcan L; Moor N; Finarov I; Kessler N; Sukhanova M; Safro MG
    J Mol Biol; 2012 Jan; 415(3):527-37. PubMed ID: 22137894
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of human cytosolic phenylalanyl-tRNA synthetase: evidence for kingdom-specific design of the active sites and tRNA binding patterns.
    Finarov I; Moor N; Kessler N; Klipcan L; Safro MG
    Structure; 2010 Mar; 18(3):343-53. PubMed ID: 20223217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of low-molecular-weight substrates in functional binding of the tRNAPhe acceptor end by phenylalanyl-tRNA synthetase.
    Vasil'eva IA; Bogachev VS; Favre A; Lavrik OI; Moor NA
    Biochemistry (Mosc); 2004 Feb; 69(2):143-53. PubMed ID: 15000680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Translation quality control is critical for bacterial responses to amino acid stress.
    Bullwinkle TJ; Ibba M
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2252-7. PubMed ID: 26858451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative study of the relationship between thermostability and function of phenylalanyl-tRNA synthetases from Escherichia coli and Thermus thermophilus.
    Bobkova EV; Stepanov VG; Lavrik OI
    FEBS Lett; 1992 May; 302(1):54-6. PubMed ID: 1587354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of tRNA(Phe) recognition nucleotides for phenylalanyl-tRNA synthetase from Thermus thermophilus.
    Moor N; Nazarenko I; Ankilova V; Khodyreva S; Lavrik O
    Biochimie; 1992 Apr; 74(4):353-6. PubMed ID: 1379078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidation of phenylalanyl-tRNA synthetase positively regulates translational quality control.
    Steiner RE; Kyle AM; Ibba M
    Proc Natl Acad Sci U S A; 2019 May; 116(20):10058-10063. PubMed ID: 31036643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transplantation of a tyrosine editing domain into a tyrosyl-tRNA synthetase variant enhances its specificity for a tyrosine analog.
    Oki K; Sakamoto K; Kobayashi T; Sasaki HM; Yokoyama S
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13298-303. PubMed ID: 18765802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Affinity modification of phenylalanyl-tRNA synthetase from Thermus thermophilus by tRNAPhe transcripts containing 4-thiouridine.
    Moor NA; Stepanov VG; Ankilova VN; Favre A; Lavrik OI
    Biochemistry (Mosc); 1998 Sep; 63(9):1044-50. PubMed ID: 9795273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Editing mechanism of aminoacyl-tRNA synthetases operates by a hybrid ribozyme/protein catalyst.
    Hagiwara Y; Field MJ; Nureki O; Tateno M
    J Am Chem Soc; 2010 Mar; 132(8):2751-8. PubMed ID: 20136139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2006 Jun; 359(4):901-12. PubMed ID: 16697013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression and characterization of a human mitochondrial phenylalanyl-tRNA synthetase.
    Bullard JM; Cai YC; Demeler B; Spremulli LL
    J Mol Biol; 1999 May; 288(4):567-77. PubMed ID: 10329163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mycobacterium tuberculosis Phe-tRNA synthetase: structural insights into tRNA recognition and aminoacylation.
    Michalska K; Jedrzejczak R; Wower J; Chang C; BaragaƱa B; Gilbert IH; Forte B; Joachimiak A
    Nucleic Acids Res; 2021 May; 49(9):5351-5368. PubMed ID: 33885823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diadenosine oligophosphates: peculiarities of synthesis by phenylalanyl-tRNA synthetases from E. coli MRE-600 and Thermus thermophilus HB8.
    Biryukov AI; Ankilova VN; Lavrik OI
    Nucleic Acids Symp Ser; 1991; (24):19-20. PubMed ID: 1841280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification, cloning, and expression of a functional phenylalanyl-tRNA synthetase (pheRS) from Staphylococcus aureus.
    Savopoulos JW; Hibbs M; Jones EJ; Mensah L; Richardson C; Fosberry A; Downes R; Fox SG; Brown JR; Jenkins O
    Protein Expr Purif; 2001 Apr; 21(3):470-84. PubMed ID: 11281723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.