BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22035792)

  • 1. Structural and mechanistic insights into C-P bond hydrolysis by phosphonoacetate hydrolase.
    Agarwal V; Borisova SA; Metcalf WW; van der Donk WA; Nair SK
    Chem Biol; 2011 Oct; 18(10):1230-40. PubMed ID: 22035792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergence of chemical function in the alkaline phosphatase superfamily: structure and mechanism of the P-C bond cleaving enzyme phosphonoacetate hydrolase.
    Kim A; Benning MM; OkLee S; Quinn J; Martin BM; Holden HM; Dunaway-Mariano D
    Biochemistry; 2011 May; 50(17):3481-94. PubMed ID: 21366328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of phosphonoacetaldehyde dehydrogenase: the missing link in phosphonoacetate formation.
    Agarwal V; Peck SC; Chen JH; Borisova SA; Chekan JR; van der Donk WA; Nair SK
    Chem Biol; 2014 Jan; 21(1):125-35. PubMed ID: 24361046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and biochemical characterization of a pathway for the degradation of 2-aminoethylphosphonate in Sinorhizobium meliloti 1021.
    Borisova SA; Christman HD; Metcalf ME; Zulkepli NA; Zhang JK; van der Donk WA; Metcalf WW
    J Biol Chem; 2011 Jun; 286(25):22283-90. PubMed ID: 21543322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution.
    Sunden F; AlSadhan I; Lyubimov A; Doukov T; Swan J; Herschlag D
    J Biol Chem; 2017 Dec; 292(51):20960-20974. PubMed ID: 29070681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential for phosphonoacetate utilization by marine bacteria in temperate coastal waters.
    Gilbert JA; Thomas S; Cooley NA; Kulakova A; Field D; Booth T; McGrath JW; Quinn JP; Joint I
    Environ Microbiol; 2009 Jan; 11(1):111-25. PubMed ID: 18783384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography.
    Bobyr E; Lassila JK; Wiersma-Koch HI; Fenn TD; Lee JJ; Nikolic-Hughes I; Hodgson KO; Rees DC; Hedman B; Herschlag D
    J Mol Biol; 2012 Jan; 415(1):102-17. PubMed ID: 22056344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction.
    Perry SL; Guha S; Pawate AS; Bhaskarla A; Agarwal V; Nair SK; Kenis PJ
    Lab Chip; 2013 Aug; 13(16):3183-7. PubMed ID: 23828485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for carbon catabolite repression in the metabolism of phosphonoacetate by Agromyces fucosus Vs2.
    O'Loughlin SN; Graham RL; McMullan G; Ternan NG
    FEMS Microbiol Lett; 2006 Aug; 261(1):133-40. PubMed ID: 16842370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The construction of a whole-cell biosensor for phosphonoacetate, based on the LysR-like transcriptional regulator PhnR from Pseudomonas fluorescens 23F.
    Kulakova AN; Kulakov LA; McGrath JW; Quinn JP
    Microb Biotechnol; 2009 Mar; 2(2):234-40. PubMed ID: 21261917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and biochemical properties of an alkaline phosphatase PhoX family protein found in many bacteria.
    Zaheer R; Morton R; Proudfoot M; Yakunin A; Finan TM
    Environ Microbiol; 2009 Jun; 11(6):1572-87. PubMed ID: 19245529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray structure reveals a new class and provides insight into evolution of alkaline phosphatases.
    Bihani SC; Das A; Nilgiriwala KS; Prashar V; Pirocchi M; Apte SK; Ferrer JL; Hosur MV
    PLoS One; 2011; 6(7):e22767. PubMed ID: 21829507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional analysis of the phosphonoacetate hydrolase (phnA) gene region in Pseudomonas fluorescens 23F.
    Kulakova AN; Kulakov LA; Akulenko NV; Ksenzenko VN; Hamilton JT; Quinn JP
    J Bacteriol; 2001 Jun; 183(11):3268-75. PubMed ID: 11344133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Mechanistic Analysis of the Choline Sulfatase from Sinorhizobium melliloti: A Class I Sulfatase Specific for an Alkyl Sulfate Ester.
    van Loo B; Schober M; Valkov E; Heberlein M; Bornberg-Bauer E; Faber K; Hyvönen M; Hollfelder F
    J Mol Biol; 2018 Mar; 430(7):1004-1023. PubMed ID: 29458126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A metal-independent hydrolase from a Penicillium oxalicum strain able to use phosphonoacetic acid as the only phosphorus source.
    Klimek-Ochab M; Lejczak B; Forlani G
    FEMS Microbiol Lett; 2003 May; 222(2):205-9. PubMed ID: 12770709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new member of the alkaline phosphatase superfamily with a formylglycine nucleophile: structural and kinetic characterisation of a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum.
    Jonas S; van Loo B; Hyvönen M; Hollfelder F
    J Mol Biol; 2008 Dec; 384(1):120-36. PubMed ID: 18793651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first crystal structure of a family 129 glycoside hydrolase from a probiotic bacterium reveals critical residues and metal cofactors.
    Sato M; Liebschner D; Yamada Y; Matsugaki N; Arakawa T; Wills SS; Hattie M; Stubbs KA; Ito T; Senda T; Ashida H; Fushinobu S
    J Biol Chem; 2017 Jul; 292(29):12126-12138. PubMed ID: 28546425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of MurNAc 6-phosphate hydrolase (MurQ) from Haemophilus influenzae with a bound inhibitor.
    Hadi T; Hazra S; Tanner ME; Blanchard JS
    Biochemistry; 2013 Dec; 52(51):9358-66. PubMed ID: 24251551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversification of function in the haloacid dehalogenase enzyme superfamily: The role of the cap domain in hydrolytic phosphoruscarbon bond cleavage.
    Lahiri SD; Zhang G; Dunaway-Mariano D; Allen KN
    Bioorg Chem; 2006 Dec; 34(6):394-409. PubMed ID: 17070898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of a novel carbon-phosphorus bond cleavage activity in cell-free extracts of an environmental Pseudomonas fluorescens isolate.
    McMullan G; Quinn JP
    Biochem Biophys Res Commun; 1992 Apr; 184(2):1022-7. PubMed ID: 1575721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.