These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22036884)

  • 1. Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells.
    Hou BH; Takanaga H; Grossmann G; Chen LQ; Qu XQ; Jones AM; Lalonde S; Schweissgut O; Wiechert W; Frommer WB
    Nat Protoc; 2011 Oct; 6(11):1818-33. PubMed ID: 22036884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast.
    Bermejo C; Haerizadeh F; Takanaga H; Chermak D; Frommer WB
    Nat Protoc; 2011 Oct; 6(11):1806-17. PubMed ID: 22036883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.
    Mohsin M; Ahmad A; Iqbal M
    Biotechnol Lett; 2015 Oct; 37(10):1919-28. PubMed ID: 26184603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants.
    Chaudhuri B; Hörmann F; Frommer WB
    J Exp Bot; 2011 Apr; 62(7):2411-7. PubMed ID: 21266495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative imaging for discovery and assembly of the metabo-regulome.
    Okumoto S; Takanaga H; Frommer WB
    New Phytol; 2008; 180(2):271-295. PubMed ID: 19138219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic analysis of cytosolic glucose and ATP levels in yeast using optical sensors.
    Bermejo C; Haerizadeh F; Takanaga H; Chermak D; Frommer WB
    Biochem J; 2010 Dec; 432(2):399-406. PubMed ID: 20854260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative imaging with fluorescent biosensors.
    Okumoto S; Jones A; Frommer WB
    Annu Rev Plant Biol; 2012; 63():663-706. PubMed ID: 22404462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence resonance energy transfer microscopy (FRET).
    Kedziora KM; Jalink K
    Methods Mol Biol; 2015; 1251():67-82. PubMed ID: 25391795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria.
    Kaper T; Lager I; Looger LL; Chermak D; Frommer WB
    Biotechnol Biofuels; 2008 Jun; 1(1):11. PubMed ID: 18522753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Verifying the function and localization of genetically encoded Ca2+ sensors and converting FRET ratios to Ca2+ concentrations.
    Park JG; Palmer AE
    Cold Spring Harb Protoc; 2015 Jan; 2015(1):pdb.prot076547. PubMed ID: 25561614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics.
    Zadran S; Standley S; Wong K; Otiniano E; Amighi A; Baudry M
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):895-902. PubMed ID: 23053099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genetically encoded Förster resonance energy transfer sensor for monitoring in vivo trehalose-6-phosphate dynamics.
    Peroza EA; Ewald JC; Parakkal G; Skotheim JM; Zamboni N
    Anal Biochem; 2015 Apr; 474():1-7. PubMed ID: 25582303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic FRET sensors in intact organs: Applying spectral unmixing to acquire reliable signals.
    Gándara L; Durrieu L; Wappner P
    Biol Open; 2023 Oct; 12(10):. PubMed ID: 37671927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative imaging approaches for small-molecule measurements using FRET sensors in plants.
    Okumoto S
    Methods Mol Biol; 2014; 1083():55-64. PubMed ID: 24218210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically Encoded Sensors to Study Metabolism in Drosophila.
    McMullen E; Hertenstein H; Müller S; Schirmeier S
    Methods Mol Biol; 2022; 2540():401-414. PubMed ID: 35980591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots.
    Zhu Q; Wang L; Dong Q; Chang S; Wen K; Jia S; Chu Z; Wang H; Gao P; Zhao H; Han S; Wang Y
    J Plant Physiol; 2017 Aug; 215():65-72. PubMed ID: 28582731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells.
    Mohsin M; Ahmad A
    Biosens Bioelectron; 2014 Sep; 59():358-64. PubMed ID: 24752146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Live cell monitoring of glycine betaine by FRET-based genetically encoded nanosensor.
    Ahmad M; Ameen S; Siddiqi TO; Khan P; Ahmad A
    Biosens Bioelectron; 2016 Dec; 86():169-175. PubMed ID: 27371825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput examination of fluorescence resonance energy transfer-detected metal-ion response in mammalian cells.
    Ma H; Gibson EA; Dittmer PJ; Jimenez R; Palmer AE
    J Am Chem Soc; 2012 Feb; 134(5):2488-91. PubMed ID: 22260720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.