These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Quantitative imaging for discovery and assembly of the metabo-regulome. Okumoto S; Takanaga H; Frommer WB New Phytol; 2008; 180(2):271-295. PubMed ID: 19138219 [TBL] [Abstract][Full Text] [Related]
6. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells. Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743 [TBL] [Abstract][Full Text] [Related]
7. Dynamic analysis of cytosolic glucose and ATP levels in yeast using optical sensors. Bermejo C; Haerizadeh F; Takanaga H; Chermak D; Frommer WB Biochem J; 2010 Dec; 432(2):399-406. PubMed ID: 20854260 [TBL] [Abstract][Full Text] [Related]
8. Quantitative imaging with fluorescent biosensors. Okumoto S; Jones A; Frommer WB Annu Rev Plant Biol; 2012; 63():663-706. PubMed ID: 22404462 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence resonance energy transfer microscopy (FRET). Kedziora KM; Jalink K Methods Mol Biol; 2015; 1251():67-82. PubMed ID: 25391795 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria. Kaper T; Lager I; Looger LL; Chermak D; Frommer WB Biotechnol Biofuels; 2008 Jun; 1(1):11. PubMed ID: 18522753 [TBL] [Abstract][Full Text] [Related]
11. Verifying the function and localization of genetically encoded Ca2+ sensors and converting FRET ratios to Ca2+ concentrations. Park JG; Palmer AE Cold Spring Harb Protoc; 2015 Jan; 2015(1):pdb.prot076547. PubMed ID: 25561614 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics. Zadran S; Standley S; Wong K; Otiniano E; Amighi A; Baudry M Appl Microbiol Biotechnol; 2012 Nov; 96(4):895-902. PubMed ID: 23053099 [TBL] [Abstract][Full Text] [Related]
13. A genetically encoded Förster resonance energy transfer sensor for monitoring in vivo trehalose-6-phosphate dynamics. Peroza EA; Ewald JC; Parakkal G; Skotheim JM; Zamboni N Anal Biochem; 2015 Apr; 474():1-7. PubMed ID: 25582303 [TBL] [Abstract][Full Text] [Related]
15. Quantitative imaging approaches for small-molecule measurements using FRET sensors in plants. Okumoto S Methods Mol Biol; 2014; 1083():55-64. PubMed ID: 24218210 [TBL] [Abstract][Full Text] [Related]
16. Genetically Encoded Sensors to Study Metabolism in Drosophila. McMullen E; Hertenstein H; Müller S; Schirmeier S Methods Mol Biol; 2022; 2540():401-414. PubMed ID: 35980591 [TBL] [Abstract][Full Text] [Related]
17. FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots. Zhu Q; Wang L; Dong Q; Chang S; Wen K; Jia S; Chu Z; Wang H; Gao P; Zhao H; Han S; Wang Y J Plant Physiol; 2017 Aug; 215():65-72. PubMed ID: 28582731 [TBL] [Abstract][Full Text] [Related]
18. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells. Mohsin M; Ahmad A Biosens Bioelectron; 2014 Sep; 59():358-64. PubMed ID: 24752146 [TBL] [Abstract][Full Text] [Related]
19. Live cell monitoring of glycine betaine by FRET-based genetically encoded nanosensor. Ahmad M; Ameen S; Siddiqi TO; Khan P; Ahmad A Biosens Bioelectron; 2016 Dec; 86():169-175. PubMed ID: 27371825 [TBL] [Abstract][Full Text] [Related]
20. High-throughput examination of fluorescence resonance energy transfer-detected metal-ion response in mammalian cells. Ma H; Gibson EA; Dittmer PJ; Jimenez R; Palmer AE J Am Chem Soc; 2012 Feb; 134(5):2488-91. PubMed ID: 22260720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]