These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 22037584)

  • 21. Remodeling of yeast CUP1 chromatin involves activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences.
    Shen CH; Leblanc BP; Alfieri JA; Clark DJ
    Mol Cell Biol; 2001 Jan; 21(2):534-47. PubMed ID: 11134341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing.
    Triolo T; Sternglanz R
    Nature; 1996 May; 381(6579):251-3. PubMed ID: 8622770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different epigenetic layers engage in complex crosstalk to define the epigenetic state of mammalian rRNA genes.
    Grummt I
    Hum Mol Genet; 2007 Apr; 16 Spec No 1():R21-7. PubMed ID: 17613545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The histone variant H2A.Z interconverts two stable epigenetic chromatin states.
    Zhao J; Siew WL; Sun W; Lehming N
    Biochem J; 2011 Nov; 439(3):487-95. PubMed ID: 21736558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into the impact of histone acetylation and methylation on Sir protein recruitment, spreading, and silencing in Saccharomyces cerevisiae.
    Yang B; Britton J; Kirchmaier AL
    J Mol Biol; 2008 Sep; 381(4):826-44. PubMed ID: 18619469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of silencer binding proteins from yeast: possible roles in SIR control and DNA replication.
    Shore D; Stillman DJ; Brand AH; Nasmyth KA
    EMBO J; 1987 Feb; 6(2):461-7. PubMed ID: 15981337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epigenetic chromatin silencing: bistability and front propagation.
    Sedighi M; Sengupta AM
    Phys Biol; 2007 Nov; 4(4):246-55. PubMed ID: 17991991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assembling heterochromatin in the appropriate places: A boost is needed.
    Rusche LN; Lynch PJ
    J Cell Physiol; 2009 Jun; 219(3):525-8. PubMed ID: 19259946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple histone code opens many paths to epigenetics.
    Sneppen K; Dodd IB
    PLoS Comput Biol; 2012; 8(8):e1002643. PubMed ID: 22916004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating Histone Modification Dynamics by Mechanistic Computational Modeling.
    Menon G; Howard M
    Methods Mol Biol; 2022; 2529():441-473. PubMed ID: 35733026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Yeast Heterochromatin Only Stably Silences Weak Regulatory Elements by Altering Burst Duration.
    Wu K; Dhillon N; Bajor A; Abrahamson S; Kamakaka RT
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locus dependence in epigenetic chromatin silencing.
    Mukhopadhyay S; Nagaraj VH; Sengupta AM
    Biosystems; 2010 Oct; 102(1):49-54. PubMed ID: 20655355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epigenetic switching with asymmetric bridging interactions.
    Skjegstad LEJ; Nickels JF; Sneppen K; Kirkegaard JB
    Biophys J; 2023 Jun; 122(12):2421-2429. PubMed ID: 37085994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning gene expression with nucleosome-disfavoring sequences.
    Palpant T; Lieb J
    Nat Genet; 2012 Jun; 44(7):735-6. PubMed ID: 22735583
    [No Abstract]   [Full Text] [Related]  

  • 35. Dynamical modeling of the H3K27 epigenetic landscape in mouse embryonic stem cells.
    Newar K; Abdulla AZ; Salari H; Fanchon E; Jost D
    PLoS Comput Biol; 2022 Sep; 18(9):e1010450. PubMed ID: 36054209
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromatin dynamics controls epigenetic domain formation.
    Katava M; Shi G; Thirumalai D
    Biophys J; 2022 Aug; 121(15):2895-2905. PubMed ID: 35799447
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of chromosomal organization on epigenetic drift and domain stability revealed by physics-based simulations.
    Wakim JG; Sandholtz SH; Spakowitz AJ
    Biophys J; 2021 Nov; 120(22):4932-4943. PubMed ID: 34687722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using computational modelling to reveal mechanisms of epigenetic Polycomb control.
    Lövkvist C; Howard M
    Biochem Soc Trans; 2021 Feb; 49(1):71-77. PubMed ID: 33616630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromosome Structural Mechanics Dictates the Local Spreading of Epigenetic Marks.
    Sandholtz SH; Kannan D; Beltran BG; Spakowitz AJ
    Biophys J; 2020 Oct; 119(8):1630-1639. PubMed ID: 33010237
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.