BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22037643)

  • 1. Microfabricated multiple field of view imaging flow cytometry.
    Schonbrun E; Gorthi SS; Schaak D
    Lab Chip; 2012 Jan; 12(2):268-73. PubMed ID: 22037643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sheathless inertial cell ordering for extreme throughput flow cytometry.
    Hur SC; Tse HT; Di Carlo D
    Lab Chip; 2010 Feb; 10(3):274-80. PubMed ID: 20090998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput and high-resolution flow cytometry in molded microfluidic devices.
    Simonnet C; Groisman A
    Anal Chem; 2006 Aug; 78(16):5653-63. PubMed ID: 16906708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array.
    Schonbrun E; Steinvurzel PE; Crozier KB
    Opt Express; 2011 Jan; 19(2):1385-94. PubMed ID: 21263680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase imaging flow cytometry using a focus-stack collecting microscope.
    Gorthi SS; Schonbrun E
    Opt Lett; 2012 Feb; 37(4):707-9. PubMed ID: 22344155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput.
    Balsam J; Bruck HA; Rasooly A
    Analyst; 2014 Sep; 139(17):4322-9. PubMed ID: 24995370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
    Austin Suthanthiraraj PP; Piyasena ME; Woods TA; Naivar MA; Lόpez GP; Graves SW
    Methods; 2012 Jul; 57(3):259-71. PubMed ID: 22465280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ongoing development of image cytometers.
    Kim JS; Hur D; Hwang JK; Chung C; Chang JK
    Bioanalysis; 2010 Oct; 2(10):1755-65. PubMed ID: 21083327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bead-based immunoassays using a micro-chip flow cytometer.
    Holmes D; She JK; Roach PL; Morgan H
    Lab Chip; 2007 Aug; 7(8):1048-56. PubMed ID: 17653348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput fluorescence detection using an integrated zone-plate array.
    Schonbrun E; Abate AR; Steinvurzel PE; Weitz DA; Crozier KB
    Lab Chip; 2010 Apr; 10(7):852-6. PubMed ID: 20300671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expansion channel for microchip flow cytometers.
    Bang H; Yun H; Lee WG; Park J; Lee J; Chung S; Cho K; Chung C; Han DC; Chang JK
    Lab Chip; 2006 Oct; 6(10):1381-3. PubMed ID: 17102853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications.
    Kim YW; Yoo JY
    Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens.
    Song C; Luong TD; Kong TF; Nguyen NT; Asundi AK
    Opt Lett; 2011 Mar; 36(5):657-9. PubMed ID: 21368939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobile flow cytometer for mHealth.
    Balsam J; Bruck HA; Rasooly A
    Methods Mol Biol; 2015; 1256():139-53. PubMed ID: 25626537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip high-speed sorting of micron-sized particles for high-throughput analysis.
    Holmes D; Sandison ME; Green NG; Morgan H
    IEE Proc Nanobiotechnol; 2005 Aug; 152(4):129-35. PubMed ID: 16441169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems.
    Emmelkamp J; Wolbers F; Andersson H; Dacosta RS; Wilson BC; Vermes I; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3740-5. PubMed ID: 15565697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing.
    Huang X; Guo J; Wang X; Yan M; Kang Y; Yu H
    PLoS One; 2014; 9(8):e104539. PubMed ID: 25111497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multinode acoustic focusing for parallel flow cytometry.
    Piyasena ME; Austin Suthanthiraraj PP; Applegate RW; Goumas AM; Woods TA; López GP; Graves SW
    Anal Chem; 2012 Feb; 84(4):1831-9. PubMed ID: 22239072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
    Shi J; Ahmed D; Mao X; Lin SC; Lawit A; Huang TJ
    Lab Chip; 2009 Oct; 9(20):2890-5. PubMed ID: 19789740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.