These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 22037699)
1. Supramolecular hydrogelators of N-terminated dipeptides selectively inhibit cancer cells. Kuang Y; Gao Y; Xu B Chem Commun (Camb); 2011 Dec; 47(47):12625-7. PubMed ID: 22037699 [TBL] [Abstract][Full Text] [Related]
2. Salt-induced hydrogelation of functionalised-dipeptides at high pH. Chen L; Pont G; Morris K; Lotze G; Squires A; Serpell LC; Adams DJ Chem Commun (Camb); 2011 Nov; 47(44):12071-3. PubMed ID: 22005767 [TBL] [Abstract][Full Text] [Related]
3. Stimuli-Responsive Dipeptide-Protein Hydrogels through Schiff Base Coassembly. Yuan T; Fei J; Xu Y; Yang X; Li J Macromol Rapid Commun; 2017 Oct; 38(20):. PubMed ID: 28841256 [TBL] [Abstract][Full Text] [Related]
4. Ferrocenoyl phenylalanine: a new strategy toward supramolecular hydrogels with multistimuli responsive properties. Sun Z; Li Z; He Y; Shen R; Deng L; Yang M; Liang Y; Zhang Y J Am Chem Soc; 2013 Sep; 135(36):13379-86. PubMed ID: 23984683 [TBL] [Abstract][Full Text] [Related]
5. Release behavior of salicylic acid in supramolecular hydrogels formed by l-phenylalanine derivatives as hydrogelator. Cao S; Fu X; Wang N; Wang H; Yang Y Int J Pharm; 2008 Jun; 357(1-2):95-9. PubMed ID: 18329200 [TBL] [Abstract][Full Text] [Related]
6. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups. Martin AD; Wojciechowski JP; Robinson AB; Heu C; Garvey CJ; Ratcliffe J; Waddington LJ; Gardiner J; Thordarson P Sci Rep; 2017 Mar; 7():43947. PubMed ID: 28272523 [TBL] [Abstract][Full Text] [Related]
7. Construction of self-assembled nanostructure-based tetraphenylethylene dipeptides: supramolecular nanobelts as biomimetic hydrogels for cell adhesion and proliferation. Talloj SK; Mohammed M; Lin HC J Mater Chem B; 2020 Aug; 8(33):7483-7493. PubMed ID: 32667379 [TBL] [Abstract][Full Text] [Related]
8. Probing gelation ability for a library of dipeptide gelators. Awhida S; Draper ER; McDonald TO; Adams DJ J Colloid Interface Sci; 2015 Oct; 455():24-31. PubMed ID: 26047582 [TBL] [Abstract][Full Text] [Related]
10. Novel modified leucine and phenylalanine dipeptides modulate viability and attachment of cancer cells. Jorda R; Magar P; Hendrychová D; Pauk K; Dibus M; Pilařová E; Imramovský A; Kryštof V Eur J Med Chem; 2020 Feb; 188():112036. PubMed ID: 31931341 [TBL] [Abstract][Full Text] [Related]
11. The conjugates of forky peptides and nonsteroidal anti-inflammatory drugs (NSAID) self-assemble into supramolecular hydrogels for prostate cancer-specific drug delivery. Tao M; He S; Liu J; Li H; Mei L; Wu C; Xu K; Zhong W J Mater Chem B; 2019 Jan; 7(3):469-476. PubMed ID: 32254734 [TBL] [Abstract][Full Text] [Related]
12. A Capped Dipeptide Which Simultaneously Exhibits Gelation and Crystallization Behavior. Martin AD; Wojciechowski JP; Bhadbhade MM; Thordarson P Langmuir; 2016 Mar; 32(9):2245-50. PubMed ID: 26890360 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and antitumor activities of novel dipeptide derivatives derived from dehydroabietic acid. Huang XC; Wang M; Wang HS; Chen ZF; Zhang Y; Pan YM Bioorg Med Chem Lett; 2014 Mar; 24(6):1511-8. PubMed ID: 24565905 [TBL] [Abstract][Full Text] [Related]
14. Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators. Abraham BL; Liyanage W; Nilsson BL Langmuir; 2019 Nov; 35(46):14939-14948. PubMed ID: 31664849 [TBL] [Abstract][Full Text] [Related]
15. Dephosphorylation of D-peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy. Li J; Gao Y; Kuang Y; Shi J; Du X; Zhou J; Wang H; Yang Z; Xu B J Am Chem Soc; 2013 Jul; 135(26):9907-14. PubMed ID: 23742714 [TBL] [Abstract][Full Text] [Related]
16. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Du X; Zhou J; Shi J; Xu B Chem Rev; 2015 Dec; 115(24):13165-307. PubMed ID: 26646318 [TBL] [Abstract][Full Text] [Related]
17. Intramolecular interactions of a phenyl/perfluorophenyl pair in the formation of supramolecular nanofibers and hydrogels. Hsu SM; Lin YC; Chang JW; Liu YH; Lin HC Angew Chem Int Ed Engl; 2014 Feb; 53(7):1921-7. PubMed ID: 24420005 [TBL] [Abstract][Full Text] [Related]
18. Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel. Martin AD; Wojciechowski JP; Warren H; in het Panhuis M; Thordarson P Soft Matter; 2016 Mar; 12(10):2700-7. PubMed ID: 26860207 [TBL] [Abstract][Full Text] [Related]
19. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781 [TBL] [Abstract][Full Text] [Related]
20. Self-delivery multifunctional anti-HIV hydrogels for sustained release. Li J; Li X; Kuang Y; Gao Y; Du X; Shi J; Xu B Adv Healthc Mater; 2013 Dec; 2(12):1586-90. PubMed ID: 23616384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]