These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 22037812)
1. Quantitative magnetic resonance imaging (MRI) morphological analysis of knee cartilage in healthy and anterior cruciate ligament-injured knees. Li H; Hosseini A; Li JS; Gill TJ; Li G Knee Surg Sports Traumatol Arthrosc; 2012 Aug; 20(8):1496-502. PubMed ID: 22037812 [TBL] [Abstract][Full Text] [Related]
2. Comparison of T1rho relaxation times between ACL-reconstructed knees and contralateral uninjured knees. Theologis AA; Haughom B; Liang F; Zhang Y; Majumdar S; Link TM; Ma CB; Li X Knee Surg Sports Traumatol Arthrosc; 2014 Feb; 22(2):298-307. PubMed ID: 23370983 [TBL] [Abstract][Full Text] [Related]
3. Quantitative MRI T2 relaxation time evaluation of knee cartilage: comparison of meniscus-intact and -injured knees after anterior cruciate ligament reconstruction. Li H; Chen S; Tao H; Chen S Am J Sports Med; 2015 Apr; 43(4):865-72. PubMed ID: 25589385 [TBL] [Abstract][Full Text] [Related]
4. Geometric profile of the tibial plateau cartilage surface is associated with the risk of non-contact anterior cruciate ligament injury. Beynnon BD; Vacek PM; Sturnick DR; Holterman LA; Gardner-Morse M; Tourville TW; Smith HC; Slauterbeck JR; Johnson RJ; Shultz SJ J Orthop Res; 2014 Jan; 32(1):61-8. PubMed ID: 24123281 [TBL] [Abstract][Full Text] [Related]
5. Cartilage morphology and T1ρ and T2 quantification in ACL-reconstructed knees: a 2-year follow-up. Su F; Hilton JF; Nardo L; Wu S; Liang F; Link TM; Ma CB; Li X Osteoarthritis Cartilage; 2013 Aug; 21(8):1058-67. PubMed ID: 23707754 [TBL] [Abstract][Full Text] [Related]
6. Change in cartilage thickness, posttraumatic bone marrow lesions, and joint fluid volumes after acute ACL disruption: a two-year prospective MRI study of sixty-one subjects. Frobell RB J Bone Joint Surg Am; 2011 Jun; 93(12):1096-103. PubMed ID: 21776546 [TBL] [Abstract][Full Text] [Related]
7. Effects of Anterior Cruciate Ligament Deficiency on Tibiofemoral Cartilage Thickness and Strains in Response to Hopping. Sutter EG; Liu B; Utturkar GM; Widmyer MR; Spritzer CE; Cutcliffe HC; Englander ZA; Goode AP; Garrett WE; DeFrate LE Am J Sports Med; 2019 Jan; 47(1):96-103. PubMed ID: 30365903 [TBL] [Abstract][Full Text] [Related]
8. Alternations of Metabolic Profiles in Synovial Fluids and the Correlation with T2 Relaxation Times of Cartilage and Meniscus-A Study on Anterior Cruciate Ligament- (ACL-) Injured Rabbit Knees at Early Stage. Tao H; Hu Y; Qiao Y; Xie Y; Chen T; Chen S Biomed Res Int; 2019; 2019():8491301. PubMed ID: 31467914 [TBL] [Abstract][Full Text] [Related]
9. Quantitative evaluation of the tibiofemoral joint cartilage by T2 mapping in patients with acute anterior cruciate ligament injury vs contralateral knees: results from the subacute phase using data from the NACOX study cohort. Casula V; Tajik BE; Kvist J; Frobell R; Haapea M; Nieminen MT; Gauffin H; Englund M Osteoarthritis Cartilage; 2022 Jul; 30(7):987-997. PubMed ID: 35421548 [TBL] [Abstract][Full Text] [Related]
10. Inflammatory cytokines and biomarkers of cartilage metabolism 8 years after anterior cruciate ligament reconstruction: results from operated and contralateral knees. Åhlén M; Roshani L; Lidén M; Struglics A; Rostgård-Christensen L; Kartus J Am J Sports Med; 2015 Jun; 43(6):1460-6. PubMed ID: 25787698 [TBL] [Abstract][Full Text] [Related]
11. Five-year followup of knee joint cartilage thickness changes after acute rupture of the anterior cruciate ligament. Eckstein F; Wirth W; Lohmander LS; Hudelmaier MI; Frobell RB Arthritis Rheumatol; 2015 Jan; 67(1):152-61. PubMed ID: 25252019 [TBL] [Abstract][Full Text] [Related]
12. Evaluating rotational kinematics of the knee in ACL reconstructed patients using 3.0 Tesla magnetic resonance imaging. Kothari A; Haughom B; Subburaj K; Feeley B; Li X; Ma CB Knee; 2012 Oct; 19(5):648-51. PubMed ID: 22264714 [TBL] [Abstract][Full Text] [Related]
13. The acutely ACL injured knee assessed by MRI: changes in joint fluid, bone marrow lesions, and cartilage during the first year. Frobell RB; Le Graverand MP; Buck R; Roos EM; Roos HP; Tamez-Pena J; Totterman S; Lohmander LS Osteoarthritis Cartilage; 2009 Feb; 17(2):161-7. PubMed ID: 18760637 [TBL] [Abstract][Full Text] [Related]
14. Knee cartilage assessment with MRI (dGEMRIC) and subjective knee function in ACL injured copers: a cohort study with a 20 year follow-up. Neuman P; Owman H; Müller G; Englund M; Tiderius CJ; Dahlberg LE Osteoarthritis Cartilage; 2014 Jan; 22(1):84-90. PubMed ID: 24185106 [TBL] [Abstract][Full Text] [Related]
19. Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury--comparison with asymptomatic volunteers. Neuman P; Tjörnstrand J; Svensson J; Ragnarsson C; Roos H; Englund M; Tiderius CJ; Dahlberg LE Osteoarthritis Cartilage; 2011 Aug; 19(8):977-83. PubMed ID: 21621622 [TBL] [Abstract][Full Text] [Related]
20. In vivo T1rho quantitative assessment of knee cartilage after anterior cruciate ligament injury using 3 Tesla magnetic resonance imaging. Bolbos RI; Ma CB; Link TM; Majumdar S; Li X Invest Radiol; 2008 Nov; 43(11):782-8. PubMed ID: 18923257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]