These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22037839)

  • 41. Vulnerability of calbindin, calretinin and parvalbumin in a transgenic/knock-in APPswe/PS1dE9 mouse model of Alzheimer disease together with disruption of hippocampal neurogenesis.
    Verdaguer E; Brox S; Petrov D; Olloquequi J; Romero R; de Lemos ML; Camins A; Auladell C
    Exp Gerontol; 2015 Sep; 69():176-88. PubMed ID: 26099796
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immunohistochemical characterization of somatostatin containing interneurons in the rat basolateral amygdala.
    McDonald AJ; Mascagni F
    Brain Res; 2002 Jul; 943(2):237-44. PubMed ID: 12101046
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey.
    Defelipe J; González-Albo MC; Del Río MR; Elston GN
    J Comp Neurol; 1999 Sep; 412(3):515-26. PubMed ID: 10441237
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calretinin, calbindin-D28k and parvalbumin-like immunoreactivity in mouse chemoreceptor neurons.
    Kishimoto J; Keverne EB; Emson PC
    Brain Res; 1993 May; 610(2):325-9. PubMed ID: 8319093
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distribution of the calcium-binding proteins calbindin D-28K and parvalbumin in the superior colliculus of adult and neonatal cat and rhesus monkey.
    McHaffie JG; Anstrom KK; Gabriele ML; Stein BE
    Exp Brain Res; 2001 Dec; 141(4):460-70. PubMed ID: 11810140
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Brn-3a deficiency transiently increases expression of calbindin D-28 k and calretinin in the trigeminal ganglion during embryonic development.
    Ichikawa H; Terayama R; Yamaai T; Jacobowitz DM; Qiu F; Xiang M; Sugimoto T
    Cell Mol Neurobiol; 2009 Jul; 29(5):691-8. PubMed ID: 19288186
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mono- and dual-frequency fast cerebellar oscillation in mice lacking parvalbumin and/or calbindin D-28k.
    Servais L; Bearzatto B; Schwaller B; Dumont M; De Saedeleer C; Dan B; Barski JJ; Schiffmann SN; Cheron G
    Eur J Neurosci; 2005 Aug; 22(4):861-70. PubMed ID: 16115209
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ontogeny of Neurons Containing Calcium-Binding Proteins in the Preoptic Area of the Guinea Pig: Sexually Dimorphic Development of Calbindin.
    Bogus-Nowakowska K
    Dev Neurobiol; 2019 Feb; 79(2):175-201. PubMed ID: 30548568
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Parvalbumin and calbindin D-28k in vagal and glossopharyngeal sensory neurons of the rat.
    Ichikawa H; Helke CJ
    Brain Res; 1995 Mar; 675(1-2):337-41. PubMed ID: 7796149
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala.
    McDonald AJ; Mascagni F
    Neuroscience; 2001; 105(3):681-93. PubMed ID: 11516833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time-dependent changes of calbindin D-28K and parvalbumin immunoreactivity in the hippocampus of rats with streptozotocin-induced type 1 diabetes.
    Yi SS
    J Vet Sci; 2013; 14(4):373-80. PubMed ID: 23628656
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Postnatal development of calcium-binding proteins immunoreactivity (parvalbumin, calbindin, calretinin) in the human entorhinal cortex.
    Grateron L; Cebada-Sanchez S; Marcos P; Mohedano-Moriano A; Insausti AM; Muñoz M; Arroyo-Jimenez MM; Martinez-Marcos A; Artacho-Perula E; Blaizot X; Insausti R
    J Chem Neuroanat; 2003 Dec; 26(4):311-6. PubMed ID: 14729133
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distribution of parvalbumin, calbindin and calretinin containing neurons and terminal networks in relation to sleep associated nuclei in the brain of the giant Zambian mole-rat (Fukomys mechowii).
    Bhagwandin A; Gravett N; Bennett NC; Manger PR
    J Chem Neuroanat; 2013 Sep; 52():69-79. PubMed ID: 23796985
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex.
    Bu J; Sathyendra V; Nagykery N; Geula C
    Exp Neurol; 2003 Jul; 182(1):220-31. PubMed ID: 12821392
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of treadmill exercise on blood glucose, serum corticosterone levels and glucocorticoid receptor immunoreactivity in the hippocampus in chronic diabetic rats.
    Hwang IK; Yi SS; Yoo KY; Park OK; Yan B; Song W; Won MH; Yoon YS; Seong JK
    Neurochem Res; 2011 Feb; 36(2):281-7. PubMed ID: 21076867
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Co-existence of protein kinase C gamma and calcium-binding proteins in neurons of the medullary dorsal horn of the rat.
    Ni TS; Wu SX; Li YQ
    Neurosignals; 2002; 11(2):88-94. PubMed ID: 12077482
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proteomic approach to detect changes in hippocampal protein levels in an animal model of type 2 diabetes.
    Nam SM; Yoo DY; Kwon HJ; Kim JW; Jung HY; Kim DW; Han HJ; Won MH; Seong JK; Hwang IK; Yoon YS
    Neurochem Int; 2017 Sep; 108():246-253. PubMed ID: 28434974
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Partial coexistence of neuropeptide Y and calbindin D28k in the trigeminal ganglion following peripheral axotomy of the inferior alveolar nerve in the rat.
    Wakisaka S; Takikita S; Youn SH; Kurisu K
    Brain Res; 1996 Jan; 707(2):228-34. PubMed ID: 8919300
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Parvalbumin-, calbindin-, and calretinin-immunoreactive neurons in the prefrontal cortex of the owl monkey (Aotus trivirgatus): a standardized quantitative comparison with sensory and motor areas.
    Elston GN; González-Albo MC
    Brain Behav Evol; 2003; 62(1):19-30. PubMed ID: 12907857
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Postnatal phencyclidine administration selectively reduces adult cortical parvalbumin-containing interneurons.
    Wang CZ; Yang SF; Xia Y; Johnson KM
    Neuropsychopharmacology; 2008 Sep; 33(10):2442-55. PubMed ID: 18059437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.