BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22038380)

  • 1. Presence of supercooling-facilitating (anti-ice nucleation) hydrolyzable tannins in deep supercooling xylem parenchyma cells in Cercidiphyllum japonicum.
    Wang D; Kasuga J; Kuwabara C; Endoh K; Fukushi Y; Fujikawa S; Arakawa K
    Planta; 2012 Apr; 235(4):747-59. PubMed ID: 22038380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep supercooling xylem parenchyma cells of katsura tree (Cercidiphyllum japonicum) contain flavonol glycosides exhibiting high anti-ice nucleation activity.
    Kasuga J; Hashidoko Y; Nishioka A; Yoshiba M; Arakawa K; Fujikawa S
    Plant Cell Environ; 2008 Sep; 31(9):1335-48. PubMed ID: 18518920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Change of supercooling capability in solutions containing different kinds of ice nucleators by flavonol glycosides from deep supercooling xylem parenchyma cells in trees.
    Kuwabara C; Kasuga J; Wang D; Fukushi Y; Arakawa K; Koyama T; Inada T; Fujikawa S
    Cryobiology; 2011 Dec; 63(3):157-63. PubMed ID: 21906586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of supercooling-facilitating (anti-ice nucleation) activity of flavonol glycosides.
    Kasuga J; Fukushi Y; Kuwabara C; Wang D; Nishioka A; Fujikawa E; Arakawa K; Fujikawa S
    Cryobiology; 2010 Apr; 60(2):240-3. PubMed ID: 20040364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells.
    Kasuga J; Mizuno K; Arakawa K; Fujikawa S
    Cryobiology; 2007 Dec; 55(3):305-14. PubMed ID: 17936742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of supercooling activity of tannin-related polyphenols.
    Kuwabara C; Wang D; Endoh K; Fukushi Y; Arakawa K; Fujikawa S
    Cryobiology; 2013 Aug; 67(1):40-9. PubMed ID: 23644016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of cell walls and intracellular contents in supercooling capability of xylem parenchyma cells of boreal trees.
    Kasuga J; Endoh K; Yoshiba M; Taido I; Arakawa K; Uemura M; Fujikawa S
    Physiol Plant; 2013 May; 148(1):25-35. PubMed ID: 22901079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression associated with increased supercooling capability in xylem parenchyma cells of larch (Larix kaempferi).
    Takata N; Kasuga J; Takezawa D; Arakawa K; Fujikawa S
    J Exp Bot; 2007; 58(13):3731-42. PubMed ID: 18057043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of intracellular contents to facilitate supercooling capability in beech (Fagus crenata) xylem parenchyma cells.
    Kasuga J; Mizuno K; Miyaji N; Arakawa K; Fujikawa S
    Cryo Letters; 2006; 27(5):305-10. PubMed ID: 17256063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freezing activities of flavonoids in solutions containing different ice nucleators.
    Kuwabara C; Wang D; Kasuga J; Fukushi Y; Arakawa K; Koyama T; Inada T; Fujikawa S
    Cryobiology; 2012 Jun; 64(3):279-85. PubMed ID: 22406212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Larch (Larix kaempferi) xylem parenchyma cells respond to subfreezing temperature by deep supercooling.
    Kasuga J; Takata N; Yamane K; Kuroda K; Arakawa K; Fujikawa S
    Cryo Letters; 2007; 28(2):77-81. PubMed ID: 17522726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Velocity and pattern of ice propagation and deep supercooling in woody stems of Castanea sativa, Morus nigra and Quercus robur measured by IDTA.
    Neuner G; Xu B; Hacker J
    Tree Physiol; 2010 Aug; 30(8):1037-45. PubMed ID: 20616300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells.
    Kasuga J; Arakawa K; Fujikawa S
    New Phytol; 2007; 174(3):569-579. PubMed ID: 17447912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved cryopreservation by diluted vitrification solution with supercooling-facilitating flavonol glycoside.
    Kami D; Kasuga J; Arakawa K; Fujikawa S
    Cryobiology; 2008 Dec; 57(3):242-5. PubMed ID: 18824164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of galloylated cyanogenic glucosides and hydrolysable tannins from leaves of Phyllagathis rotundifolia by LC-ESI-MS/MS.
    Hooi Poay T; Sui Kiong L; Cheng Hock C
    Phytochem Anal; 2011; 22(6):516-25. PubMed ID: 21495106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supercooling-Promoting (Anti-ice Nucleation) Substances.
    Fujikawa S; Kuwabara C; Kasuga J; Arakawa K
    Adv Exp Med Biol; 2018; 1081():289-320. PubMed ID: 30288716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of phenolic constituents in aqueous Hamamelis virginiana leaf extracts during fermentation.
    Duckstein SM; Lorenz P; Stintzing FC
    Phytochem Anal; 2012; 23(6):588-97. PubMed ID: 22434718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryo-scanning electron microscopic study on freezing behavior of xylem ray parenchyma cells in hardwood species.
    Fujikawa S; Kuroda K
    Micron; 2000 Dec; 31(6):669-86. PubMed ID: 10838028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein binding and astringent taste of a polymeric procyanidin, 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose, castalagin, and grandinin.
    Hofmann T; Glabasnia A; Schwarz B; Wisman KN; Gangwer KA; Hagerman AE
    J Agric Food Chem; 2006 Dec; 54(25):9503-9. PubMed ID: 17147439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of gallotannins: beta-glucogallin-dependent formation of 1,2,3,4,6-pentagalloylglucose by enzymatic galloylation of 1,2,3,6-tetragalloylglucose.
    Cammann J; Denzel K; Schilling G; Gross GG
    Arch Biochem Biophys; 1989 Aug; 273(1):58-63. PubMed ID: 2757399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.