BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 22038402)

  • 1. Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus.
    Aernouts J; Dirckx JJ
    Biomech Model Mechanobiol; 2012 Jul; 11(6):829-40. PubMed ID: 22038402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements.
    Aernouts J; Aerts JR; Dirckx JJ
    Hear Res; 2012 Aug; 290(1-2):45-54. PubMed ID: 22583920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.
    Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM
    Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis.
    Rohani SA; Ghomashchi S; Agrawal SK; Ladak HM
    Hear Res; 2017 Mar; 345():69-78. PubMed ID: 28087415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic properties of gerbil tympanic membrane at very low frequencies.
    Aernouts J; Dirckx JJ
    J Biomech; 2012 Apr; 45(6):919-24. PubMed ID: 22326125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the quasi-static Young's modulus of the eardrum using a pressurization technique.
    Ghadarghadar N; Agrawal SK; Samani A; Ladak HM
    Comput Methods Programs Biomed; 2013 Jun; 110(3):231-9. PubMed ID: 23270964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of young's modulus of human tympanic membrane at high strain rates.
    Luo H; Dai C; Gan RZ; Lu H
    J Biomech Eng; 2009 Jun; 131(6):064501. PubMed ID: 19449971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears.
    Gaihede M; Liao D; Gregersen H
    Phys Med Biol; 2007 Feb; 52(3):803-14. PubMed ID: 17228122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of tympanic membrane elasticity parameters from in situ point indentation measurements: validation and preliminary study.
    Aernouts J; Soons JA; Dirckx JJ
    Hear Res; 2010 May; 263(1-2):177-82. PubMed ID: 19778595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic characterization of the gerbil pars flaccida from in situ inflation experiments.
    Aernouts J; Dirckx JJ
    Biomech Model Mechanobiol; 2011 Oct; 10(5):727-41. PubMed ID: 21069415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation.
    Daphalapurkar NP; Dai C; Gan RZ; Lu H
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):82-92. PubMed ID: 19627811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A non-linear viscoelastic model for the tympanic membrane.
    Motallebzadeh H; Charlebois M; Funnell WR
    J Acoust Soc Am; 2013 Dec; 134(6):4427. PubMed ID: 25669254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-Element Modelling of the Response of the Gerbil Middle Ear to Sound.
    Maftoon N; Funnell WR; Daniel SJ; Decraemer WF
    J Assoc Res Otolaryngol; 2015 Oct; 16(5):547-67. PubMed ID: 26197870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elasticity modulus of rabbit middle ear ossicles determined by a novel micro-indentation technique.
    Soons JA; Aernouts J; Dirckx JJ
    Hear Res; 2010 May; 263(1-2):33-7. PubMed ID: 19818840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-frequency finite-element modeling of the gerbil middle ear.
    Elkhouri N; Liu H; Funnell WR
    J Assoc Res Otolaryngol; 2006 Dec; 7(4):399-411. PubMed ID: 17043944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic properties of human tympanic membrane.
    Cheng T; Dai C; Gan RZ
    Ann Biomed Eng; 2007 Feb; 35(2):305-14. PubMed ID: 17160465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-linear viscoelastic properties of costal cartilage using atomic force microscopy.
    Tripathy S; Berger EJ
    Comput Methods Biomech Biomed Engin; 2012; 15(5):475-86. PubMed ID: 22432922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic indentation on human skin in vivo: ageing effects.
    Boyer G; Laquièze L; Le Bot A; Laquièze S; Zahouani H
    Skin Res Technol; 2009 Feb; 15(1):55-67. PubMed ID: 19152580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.