These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 22038660)
1. Condensation cascades and methylgroup transfer reactions during the formation of arsane, methyl- and dimethylarsane by aqueous borohydride and (methyl) arsenates. D'Ulivo A; Meija J; Mester Z; Pagliano E; Sturgeon RE Anal Bioanal Chem; 2012 Jan; 402(2):921-33. PubMed ID: 22038660 [TBL] [Abstract][Full Text] [Related]
2. The binomial distribution of hydrogen and deuterium in arsanes, diarsanes, and triarsanes generated from As(III)/[BH(n)D(4-n)]- and the effect of trace amounts of Rh(III) ions. Pagliano E; D'Ulivo A; Mester Z; Sturgeon RE; Meija J J Am Soc Mass Spectrom; 2012 Dec; 23(12):2178-86. PubMed ID: 23055075 [TBL] [Abstract][Full Text] [Related]
3. Chemical generation of arsane and methylarsanes with amine boranes. Potentialities for nonchromatographic speciation of arsenic. Pitzalis E; Onor M; Mascherpa MC; Pacchi G; Mester Z; D'Ulivo A Anal Chem; 2014 Feb; 86(3):1599-607. PubMed ID: 24428590 [TBL] [Abstract][Full Text] [Related]
4. Solubility and stability of lead arsenates at 25 degrees C. Liu HL; Zhu YN; Yu HX J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Nov; 44(13):1465-75. PubMed ID: 20183503 [TBL] [Abstract][Full Text] [Related]
5. The long-term stability of calcium arsenates: Implications for phase transformation and arsenic mobilization. Zhang D; Wang S; Wang Y; Gomez MA; Jia Y J Environ Sci (China); 2019 Oct; 84():29-41. PubMed ID: 31284914 [TBL] [Abstract][Full Text] [Related]
6. A mass spectrometric study of hydride generated arsenic species identified by direct analysis in real time (DART) following cryotrapping. Matoušek T; Kratzer J; Sturgeon RE; Mester Z; Musil S Anal Bioanal Chem; 2021 May; 413(13):3443-3453. PubMed ID: 33755769 [TBL] [Abstract][Full Text] [Related]
7. Assessment of solid phase microfiber extraction fibers for the monitoring of volatile organoarsinicals emitted from a plant-soil system. Ruppert L; Lin ZQ; Dixon RP; Johnson KA J Hazard Mater; 2013 Nov; 262():1230-6. PubMed ID: 22947180 [TBL] [Abstract][Full Text] [Related]
8. A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Müller K; Ciminelli VS; Dantas MS; Willscher S Water Res; 2010 Nov; 44(19):5660-72. PubMed ID: 20599245 [TBL] [Abstract][Full Text] [Related]
9. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Dobran S; Zagury GJ Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167 [TBL] [Abstract][Full Text] [Related]
10. Chemical reactions between arsenic and zero-valent iron in water. Bang S; Johnson MD; Korfiatis GP; Meng X Water Res; 2005 Mar; 39(5):763-70. PubMed ID: 15743620 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of generation of volatile hydrides of trace elements by aqueous tetrahydroborate(III). Mass spectrometric studies on reaction products and intermediates. D'Ulivo A; Mester Z; Meija J; Sturgeon RE Anal Chem; 2007 Apr; 79(7):3008-15. PubMed ID: 17338501 [TBL] [Abstract][Full Text] [Related]
12. Removal of arsenic from water: effect of calcium ions on As(III) removal in the KMnO(4)-Fe(II) process. Guan X; Ma J; Dong H; Jiang L Water Res; 2009 Dec; 43(20):5119-28. PubMed ID: 19201439 [TBL] [Abstract][Full Text] [Related]
13. Speciation of arsenic (III) and arsenic (V) based on quenching of CdS quantum dots fluorescence using hybrid sequential injection-stopped flow injection gas-diffusion system. Butwong N; Srijaranai S; Ngeontae W; Burakham R Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():17-23. PubMed ID: 22743609 [TBL] [Abstract][Full Text] [Related]
14. Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention. Jia Y; Demopoulos GP Water Res; 2008 Feb; 42(3):661-8. PubMed ID: 17825873 [TBL] [Abstract][Full Text] [Related]
15. Adsorption of arsenate on synthetic goethite from aqueous solutions. Lakshmipathiraj P; Narasimhan BR; Prabhakar S; Bhaskar Raju G J Hazard Mater; 2006 Aug; 136(2):281-7. PubMed ID: 16442724 [TBL] [Abstract][Full Text] [Related]
16. From simple diols to carbohydrate derivatives of phenylarsonic acid. Betz R; Klüfers P Inorg Chem; 2009 Feb; 48(3):925-35. PubMed ID: 19166366 [TBL] [Abstract][Full Text] [Related]
17. Arsenic speciation in municipal landfill leachate. Li Y; Low GK; Scott JA; Amal R Chemosphere; 2010 May; 79(8):794-801. PubMed ID: 20363013 [TBL] [Abstract][Full Text] [Related]
18. The cysteine reaction with diacetyl under wine-like conditions: proposed mechanisms for mixed origins of 2-methylthiazole, 2-methyl-3-thiazoline, 2-methylthiazolidine, and 2,4,5-trimethyloxazole. Marchand S; Almy J; de Revel G J Food Sci; 2011 Aug; 76(6):C861-8. PubMed ID: 21762161 [TBL] [Abstract][Full Text] [Related]
19. Study of arsenic(III) and arsenic(V) removal from waters using ferric hydroxide supported on silica gel prepared at low pH. Ciftçi TD; Yayayürük O; Henden E Environ Technol; 2011; 32(3-4):341-51. PubMed ID: 21780702 [TBL] [Abstract][Full Text] [Related]
20. Derivatization of organometal(loid) species by sodium borohydride problems and solutions. Grüter UM; Hitzke M; Kresimon J; Hirner AV J Chromatogr A; 2001 Dec; 938(1-2):225-36. PubMed ID: 11771841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]