These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 22038731)

  • 21. A new protein-protein docking scoring function based on interface residue properties.
    Bernauer J; Azé J; Janin J; Poupon A
    Bioinformatics; 2007 Mar; 23(5):555-62. PubMed ID: 17237048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving protein secondary structure prediction using a multi-modal BP method.
    Qu W; Sui H; Yang B; Qian W
    Comput Biol Med; 2011 Oct; 41(10):946-59. PubMed ID: 21880310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kernel methods for predicting protein-protein interactions.
    Ben-Hur A; Noble WS
    Bioinformatics; 2005 Jun; 21 Suppl 1():i38-46. PubMed ID: 15961482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ProMate: a structure based prediction program to identify the location of protein-protein binding sites.
    Neuvirth H; Raz R; Schreiber G
    J Mol Biol; 2004 Apr; 338(1):181-99. PubMed ID: 15050833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A molecular dynamics approach to study the importance of solvent in protein interactions.
    Samsonov S; Teyra J; Pisabarro MT
    Proteins; 2008 Nov; 73(2):515-25. PubMed ID: 18452208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein-spanning water networks and implications for prediction of protein-protein interactions mediated through hydrophobic effects.
    Cui D; Ou S; Patel S
    Proteins; 2014 Dec; 82(12):3312-26. PubMed ID: 25204743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploiting sequence and structure homologs to identify protein-protein binding sites.
    Chung JL; Wang W; Bourne PE
    Proteins; 2006 Mar; 62(3):630-40. PubMed ID: 16329107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein structure prediction based on sequence similarity.
    Jaroszewski L
    Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel method for protein-protein interaction site prediction using phylogenetic substitution models.
    La D; Kihara D
    Proteins; 2012 Jan; 80(1):126-41. PubMed ID: 21989996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CLIPS-1D: analysis of multiple sequence alignments to deduce for residue-positions a role in catalysis, ligand-binding, or protein structure.
    Janda JO; Busch M; Kück F; Porfenenko M; Merkl R
    BMC Bioinformatics; 2012 Apr; 13():55. PubMed ID: 22480135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CAMPO, SCR_FIND and CHC_FIND: a suite of web tools for computational structural biology.
    Paiardini A; Bossa F; Pascarella S
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W50-5. PubMed ID: 15980521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using ensemble methods to deal with imbalanced data in predicting protein-protein interactions.
    Zhang Y; Zhang D; Mi G; Ma D; Li G; Guo Y; Li M; Zhu M
    Comput Biol Chem; 2012 Feb; 36():36-41. PubMed ID: 22286086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface.
    Kastritis PL; Rodrigues JP; Folkers GE; Boelens R; Bonvin AM
    J Mol Biol; 2014 Jul; 426(14):2632-52. PubMed ID: 24768922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the potential of 3D Zernike descriptors and SVM for protein-protein interface prediction.
    Daberdaku S; Ferrari C
    BMC Bioinformatics; 2018 Feb; 19(1):35. PubMed ID: 29409446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes.
    Sudha G; Singh P; Swapna LS; Srinivasan N
    Protein Sci; 2015 Nov; 24(11):1856-73. PubMed ID: 26311309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CLIPS-4D: a classifier that distinguishes structurally and functionally important residue-positions based on sequence and 3D data.
    Janda JO; Meier A; Merkl R
    Bioinformatics; 2013 Dec; 29(23):3029-35. PubMed ID: 24048358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. H2rs: deducing evolutionary and functionally important residue positions by means of an entropy and similarity based analysis of multiple sequence alignments.
    Janda JO; Popal A; Bauer J; Busch M; Klocke M; Spitzer W; Keller J; Merkl R
    BMC Bioinformatics; 2014 Apr; 15():118. PubMed ID: 24766829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting hot spots in protein interfaces based on protrusion index, pseudo hydrophobicity and electron-ion interaction pseudopotential features.
    Xia J; Yue Z; Di Y; Zhu X; Zheng CH
    Oncotarget; 2016 Apr; 7(14):18065-75. PubMed ID: 26934646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.