These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22038873)

  • 41. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response.
    Zhang J; Misra RD
    Acta Biomater; 2007 Nov; 3(6):838-50. PubMed ID: 17638599
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Magnetic field-induced off-resonance third-order optical nonlinearity of iron oxide nanoparticles incorporated mesoporous silica thin films during heat treatment.
    Cui F; Feng C; Xie R; Hua Z; Ohtsuka H; Sakka Y; Shi J
    Opt Express; 2010 Feb; 18(3):2010-9. PubMed ID: 20174031
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: orientation of magnetic easy axis.
    Chatterjee BK; Bhattacharjee K; Dey A; Ghosh CK; Chattopadhyay KK
    Dalton Trans; 2014 Jun; 43(21):7930-44. PubMed ID: 24714977
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Non-aqueous synthesis of water-dispersible Fe3O4-Ca3(PO4)2 core-shell nanoparticles.
    Liu H; Wu J; Min JH; Hou P; Song AY; Kim YK
    Nanotechnology; 2011 Feb; 22(5):055701. PubMed ID: 21178225
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Doping gamma-Fe(2)O(3) nanoparticles with Mn(III) suppresses the transition to the alpha-Fe(2)O(3) structure.
    Lai J; Shafi KV; Loos K; Ulman A; Lee Y; Vogt T; Estournès C
    J Am Chem Soc; 2003 Sep; 125(38):11470-1. PubMed ID: 13129329
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation and characterization of thermosensitive polymers grafted onto silica-coated iron oxide nanoparticles.
    Lien YH; Wu TM
    J Colloid Interface Sci; 2008 Oct; 326(2):517-21. PubMed ID: 18667211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controlling the size of magnetic nanoparticles using pluronic block copolymer surfactants.
    Lai JI; Shafi KV; Ulman A; Loos K; Lee Y; Vogt T; Lee WL; Ong NP; Estournès C
    J Phys Chem B; 2005 Jan; 109(1):15-8. PubMed ID: 16850974
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facile synthesis of Fe(3)O(4)@Al(2)O(3) core-shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry.
    Peng HP; Liang RP; Qiu JD
    Biosens Bioelectron; 2011 Feb; 26(6):3005-11. PubMed ID: 21185712
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis and characterization of bracelet-like magnetic nanorings consisting of Ag-Fe3O4 bi-component nanoparticles.
    Zhou S; Chen Q
    Dalton Trans; 2011 Sep; 40(34):8622-9. PubMed ID: 21799984
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magnetic properties of poly(propylene imine)-copper dendromesogenic complexes: An EPR study.
    Domracheva N; Mirea A; Schwoerer M; Torre-Lorente L; Lattermann G
    Chemphyschem; 2006 Dec; 7(12):2567-77. PubMed ID: 17089431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monodispersed core-shell Fe3O4@Au nanoparticles.
    Wang L; Luo J; Fan Q; Suzuki M; Suzuki IS; Engelhard MH; Lin Y; Kim N; Wang JQ; Zhong CJ
    J Phys Chem B; 2005 Nov; 109(46):21593-601. PubMed ID: 16853803
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Debye Temperature Evaluation for Secondary Battery Cathode of α-Sn
    Ibrahim A; Tani K; Hashi K; Zhang B; Homonnay Z; Kuzmann E; Bafti A; Pavić L; Krehula S; Marciuš M; Kubuki S
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473736
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnetic properties of γ-Fe
    Kamali S; Yu E; Bates B; McBride JR; Johnson CE; Taufour V; Stroeve P
    J Phys Condens Matter; 2020 Oct; ():. PubMed ID: 33091882
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging.
    Yang H; Zhang C; Shi X; Hu H; Du X; Fang Y; Ma Y; Wu H; Yang S
    Biomaterials; 2010 May; 31(13):3667-73. PubMed ID: 20144480
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Seeded growth of ferrite nanoparticles from Mn oxides: observation of anomalies in magnetic transitions.
    Song HM; Zink JI; Khashab NM
    Phys Chem Chem Phys; 2015 Jul; 17(28):18825-33. PubMed ID: 26123580
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation.
    Skaat H; Belfort G; Margel S
    Nanotechnology; 2009 Jun; 20(22):225106. PubMed ID: 19433878
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence of low-temperature superparamagnetism in Mn3O4 nanoparticle ensembles.
    Tackett RJ; Parsons JG; Machado BI; Gaytan SM; Murr LE; Botez CE
    Nanotechnology; 2010 Sep; 21(36):365703. PubMed ID: 20699488
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fe3O4-LiMo3Se3 nanoparticle clusters as superparamagnetic nanocompasses.
    Osterloh FE; Hiramatsu H; Dumas RK; Liu K
    Langmuir; 2005 Oct; 21(21):9709-13. PubMed ID: 16207056
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy.
    Salazar-Alvarez G; Qin J; Sepelák V; Bergmann I; Vasilakaki M; Trohidou KN; Ardisson JD; Macedo WA; Mikhaylova M; Muhammed M; Baró MD; Nogués J
    J Am Chem Soc; 2008 Oct; 130(40):13234-9. PubMed ID: 18783216
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ZnFe2O4 nanoparticles dispersed in a highly porous silica aerogel matrix: a magnetic study.
    Bullita S; Casu A; Casula MF; Concas G; Congiu F; Corrias A; Falqui A; Loche D; Marras C
    Phys Chem Chem Phys; 2014 Mar; 16(10):4843-52. PubMed ID: 24469688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.