These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In vitro and in vivo anti-uveal melanoma activity of JSL-1, a novel HDAC inhibitor. Wang Y; Liu M; Jin Y; Jiang S; Pan J Cancer Lett; 2017 Aug; 400():47-60. PubMed ID: 28455241 [TBL] [Abstract][Full Text] [Related]
3. Verification of EZH2 as a druggable target in metastatic uveal melanoma. Jin B; Zhang P; Zou H; Ye H; Wang Y; Zhang J; Yang H; Pan J Mol Cancer; 2020 Mar; 19(1):52. PubMed ID: 32127003 [TBL] [Abstract][Full Text] [Related]
4. The Role of Histone Deacetylase Inhibitors in Uveal Melanoma: Current Evidence. Moschos MM; Dettoraki M; Androudi S; Kalogeropoulos D; Lavaris A; Garmpis N; Damaskos C; Garmpi A; Tsatsos M Anticancer Res; 2018 Jul; 38(7):3817-3824. PubMed ID: 29970501 [TBL] [Abstract][Full Text] [Related]
6. Dual Screen for Efficacy and Toxicity Identifies HDAC Inhibitor with Distinctive Activity Spectrum for BAP1-Mutant Uveal Melanoma. Kuznetsoff JN; Owens DA; Lopez A; Rodriguez DA; Chee NT; Kurtenbach S; Bilbao D; Roberts ER; Volmar CH; Wahlestedt C; Brothers SP; Harbour JW Mol Cancer Res; 2021 Feb; 19(2):215-222. PubMed ID: 33077485 [TBL] [Abstract][Full Text] [Related]
7. Targeting primary and metastatic uveal melanoma with a G protein inhibitor. Onken MD; Makepeace CM; Kaltenbronn KM; Choi J; Hernandez-Aya L; Weilbaecher KN; Piggott KD; Rao PK; Yuede CM; Dixon AJ; Osei-Owusu P; Cooper JA; Blumer KJ J Biol Chem; 2021; 296():100403. PubMed ID: 33577798 [TBL] [Abstract][Full Text] [Related]
8. BAP1 mutant uveal melanoma is stratified by metabolic phenotypes with distinct vulnerability to metabolic inhibitors. Han A; Purwin TJ; Bechtel N; Liao C; Chua V; Seifert E; Sato T; Schug ZT; Speicher DW; Harbour JW; Aplin AE Oncogene; 2021 Jan; 40(3):618-632. PubMed ID: 33208912 [TBL] [Abstract][Full Text] [Related]
9. Cotargeting histone deacetylases and oncogenic BRAF synergistically kills human melanoma cells by necrosis independently of RIPK1 and RIPK3. Lai F; Guo ST; Jin L; Jiang CC; Wang CY; Croft A; Chi MN; Tseng HY; Farrelly M; Atmadibrata B; Norman J; Liu T; Hersey P; Zhang XD Cell Death Dis; 2013 Jun; 4(6):e655. PubMed ID: 23744355 [TBL] [Abstract][Full Text] [Related]
10. Sustained inhibition of deacetylases is required for the antitumor activity of the histone deactylase inhibitors panobinostat and vorinostat in models of colorectal cancer. Wilson PM; Labonte MJ; Martin SC; Kuwahara ST; El-Khoueiry A; Lenz HJ; Ladner RD Invest New Drugs; 2013 Aug; 31(4):845-57. PubMed ID: 23299388 [TBL] [Abstract][Full Text] [Related]
11. Transposase mapping identifies the genomic targets of BAP1 in uveal melanoma. Yen M; Qi Z; Chen X; Cooper JA; Mitra RD; Onken MD BMC Med Genomics; 2018 Nov; 11(1):97. PubMed ID: 30400891 [TBL] [Abstract][Full Text] [Related]
12. The antimelanoma activity of the histone deacetylase inhibitor panobinostat (LBH589) is mediated by direct tumor cytotoxicity and increased tumor immunogenicity. Woods DM; Woan K; Cheng F; Wang H; Perez-Villarroel P; Lee C; Lienlaf M; Atadja P; Seto E; Weber J; Sotomayor EM; Villagra A Melanoma Res; 2013 Oct; 23(5):341-8. PubMed ID: 23963286 [TBL] [Abstract][Full Text] [Related]
13. Depsipeptide (FR901228) inhibits proliferation and induces apoptosis in primary and metastatic human uveal melanoma cell lines. Klisovic DD; Katz SE; Effron D; Klisovic MI; Wickham J; Parthun MR; Guimond M; Marcucci G Invest Ophthalmol Vis Sci; 2003 Jun; 44(6):2390-8. PubMed ID: 12766035 [TBL] [Abstract][Full Text] [Related]
14. Targeting of histone deacetylases to reactivate tumour suppressor genes and its therapeutic potential in a human cervical cancer xenograft model. Feng D; Wu J; Tian Y; Zhou H; Zhou Y; Hu W; Zhao W; Wei H; Ling B; Ma C PLoS One; 2013; 8(11):e80657. PubMed ID: 24260446 [TBL] [Abstract][Full Text] [Related]
15. Natural withanolide withaferin A induces apoptosis in uveal melanoma cells by suppression of Akt and c-MET activation. Samadi AK; Cohen SM; Mukerji R; Chaguturu V; Zhang X; Timmermann BN; Cohen MS; Person EA Tumour Biol; 2012 Aug; 33(4):1179-89. PubMed ID: 22477711 [TBL] [Abstract][Full Text] [Related]
16. Influence of a novel histone deacetylase inhibitor panobinostat (LBH589) on the growth of ovarian cancer. Garrett LA; Growdon WB; Rueda BR; Foster R J Ovarian Res; 2016 Sep; 9(1):58. PubMed ID: 27633667 [TBL] [Abstract][Full Text] [Related]
18. Activity of deacetylase inhibitor panobinostat (LBH589) in cutaneous T-cell lymphoma models: Defining molecular mechanisms of resistance. Shao W; Growney JD; Feng Y; O'Connor G; Pu M; Zhu W; Yao YM; Kwon P; Fawell S; Atadja P Int J Cancer; 2010 Nov; 127(9):2199-208. PubMed ID: 20127862 [TBL] [Abstract][Full Text] [Related]
19. Histone deacetylase inhibitors repress chondrosarcoma cell proliferation. Zhu J; Gu J; Ma J; Xu Z; Tao H J BUON; 2015; 20(1):269-74. PubMed ID: 25778327 [TBL] [Abstract][Full Text] [Related]
20. A novel small molecule hybrid of vorinostat and DACA displays anticancer activity against human hormone-refractory metastatic prostate cancer through dual inhibition of histone deacetylase and topoisomerase I. Yu CC; Pan SL; Chao SW; Liu SP; Hsu JL; Yang YC; Li TK; Huang WJ; Guh JH Biochem Pharmacol; 2014 Aug; 90(3):320-30. PubMed ID: 24915421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]