These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
426 related articles for article (PubMed ID: 22039050)
1. Mutant p53 disrupts role of ShcA protein in balancing Smad protein-dependent and -independent signaling activity of transforming growth factor-β (TGF-β). Lin S; Yu L; Yang J; Liu Z; Karia B; Bishop AJR; Jackson J; Lozano G; Copland JA; Mu X; Sun B; Sun LZ J Biol Chem; 2011 Dec; 286(51):44023-44034. PubMed ID: 22039050 [TBL] [Abstract][Full Text] [Related]
2. ShcA Protects against Epithelial-Mesenchymal Transition through Compartmentalized Inhibition of TGF-β-Induced Smad Activation. Muthusamy BP; Budi EH; Katsuno Y; Lee MK; Smith SM; Mirza AM; Akhurst RJ; Derynck R PLoS Biol; 2015 Dec; 13(12):e1002325. PubMed ID: 26680585 [TBL] [Abstract][Full Text] [Related]
3. Mutant p53 promotes tumor cell malignancy by both positive and negative regulation of the transforming growth factor β (TGF-β) pathway. Ji L; Xu J; Liu J; Amjad A; Zhang K; Liu Q; Zhou L; Xiao J; Li X J Biol Chem; 2015 May; 290(18):11729-40. PubMed ID: 25767119 [TBL] [Abstract][Full Text] [Related]
4. Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail. Moon H; Ju HL; Chung SI; Cho KJ; Eun JW; Nam SW; Han KH; Calvisi DF; Ro SW Gastroenterology; 2017 Nov; 153(5):1378-1391.e6. PubMed ID: 28734833 [TBL] [Abstract][Full Text] [Related]
5. An imbalance between Smad and MAPK pathways is responsible for TGF-beta tumor promoting effects in high-grade gliomas. Nickl-Jockschat T; Arslan F; Doerfelt A; Bogdahn U; Bosserhoff A; Hau P Int J Oncol; 2007 Feb; 30(2):499-507. PubMed ID: 17203233 [TBL] [Abstract][Full Text] [Related]
6. Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells. Vo BT; Cody B; Cao Y; Khan SA Carcinogenesis; 2012 Nov; 33(11):2054-64. PubMed ID: 22843506 [TBL] [Abstract][Full Text] [Related]
7. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. Lee MK; Pardoux C; Hall MC; Lee PS; Warburton D; Qing J; Smith SM; Derynck R EMBO J; 2007 Sep; 26(17):3957-67. PubMed ID: 17673906 [TBL] [Abstract][Full Text] [Related]
8. Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Galliher AJ; Schiemann WP Cancer Res; 2007 Apr; 67(8):3752-8. PubMed ID: 17440088 [TBL] [Abstract][Full Text] [Related]
9. Transforming growth factor beta signaling via Ras in mesenchymal cells requires p21-activated kinase 2 for extracellular signal-regulated kinase-dependent transcriptional responses. Suzuki K; Wilkes MC; Garamszegi N; Edens M; Leof EB Cancer Res; 2007 Apr; 67(8):3673-82. PubMed ID: 17440079 [TBL] [Abstract][Full Text] [Related]
10. Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling. Hough C; Radu M; Doré JJ PLoS One; 2012; 7(8):e42513. PubMed ID: 22880011 [TBL] [Abstract][Full Text] [Related]
11. Signaling through ShcA is required for transforming growth factor beta- and Neu/ErbB-2-induced breast cancer cell motility and invasion. Northey JJ; Chmielecki J; Ngan E; Russo C; Annis MG; Muller WJ; Siegel PM Mol Cell Biol; 2008 May; 28(10):3162-76. PubMed ID: 18332126 [TBL] [Abstract][Full Text] [Related]
12. Distinct phosphotyrosine-dependent functions of the ShcA adaptor protein are required for transforming growth factor β (TGFβ)-induced breast cancer cell migration, invasion, and metastasis. Northey JJ; Dong Z; Ngan E; Kaplan A; Hardy WR; Pawson T; Siegel PM J Biol Chem; 2013 Feb; 288(7):5210-22. PubMed ID: 23277357 [TBL] [Abstract][Full Text] [Related]
14. Salvianolic acid B exerts anti-liver fibrosis effects via inhibition of MAPK-mediated phospho-Smad2/3 at linker regions in vivo and in vitro. Wu C; Chen W; Ding H; Li D; Wen G; Zhang C; Lu W; Chen M; Yang Y Life Sci; 2019 Dec; 239():116881. PubMed ID: 31678285 [TBL] [Abstract][Full Text] [Related]
15. SHCBP1 promotes synovial sarcoma cell metastasis via targeting TGF-β1/Smad signaling pathway and is associated with poor prognosis. Peng C; Zhao H; Song Y; Chen W; Wang X; Liu X; Zhang C; Zhao J; Li J; Cheng G; Wu D; Gao C; Wang X J Exp Clin Cancer Res; 2017 Oct; 36(1):141. PubMed ID: 29020987 [TBL] [Abstract][Full Text] [Related]
16. Mutant p53 attenuates the SMAD-dependent transforming growth factor beta1 (TGF-beta1) signaling pathway by repressing the expression of TGF-beta receptor type II. Kalo E; Buganim Y; Shapira KE; Besserglick H; Goldfinger N; Weisz L; Stambolsky P; Henis YI; Rotter V Mol Cell Biol; 2007 Dec; 27(23):8228-42. PubMed ID: 17875924 [TBL] [Abstract][Full Text] [Related]
17. ERK contributes to the effects of Smad signaling on oxidized LDL-induced PAI-1 expression in human mesangial cells. Hong HK; Song CY; Kim BC; Lee HS Transl Res; 2006 Oct; 148(4):171-9. PubMed ID: 17002919 [TBL] [Abstract][Full Text] [Related]
18. TGF-? regulates the ERK/MAPK pathway independent of the SMAD pathway by repressing miRNA-124 to increase MALAT1 expression in nasopharyngeal carcinoma. Du M; Chen W; Zhang W; Tian XK; Wang T; Wu J; Gu J; Zhang N; Lu ZW; Qian LX; Fei Q; Wang Y; Peng F; He X; Yin L Biomed Pharmacother; 2018 Mar; 99():688-696. PubMed ID: 29710466 [TBL] [Abstract][Full Text] [Related]
19. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells. Hayashida T; Decaestecker M; Schnaper HW FASEB J; 2003 Aug; 17(11):1576-8. PubMed ID: 12824291 [TBL] [Abstract][Full Text] [Related]
20. p130Cas is required for mammary tumor growth and transforming growth factor-beta-mediated metastasis through regulation of Smad2/3 activity. Wendt MK; Smith JA; Schiemann WP J Biol Chem; 2009 Dec; 284(49):34145-56. PubMed ID: 19822523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]