BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22039261)

  • 1. Lymph node B lymphocyte trafficking is constrained by anatomy and highly dependent upon chemoattractant desensitization.
    Park C; Hwang IY; Sinha RK; Kamenyeva O; Davis MD; Kehrl JH
    Blood; 2012 Jan; 119(4):978-89. PubMed ID: 22039261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical roles for Rac GTPases in T-cell migration to and within lymph nodes.
    Faroudi M; Hons M; Zachacz A; Dumont C; Lyck R; Stein JV; Tybulewicz VL
    Blood; 2010 Dec; 116(25):5536-47. PubMed ID: 20870900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high endothelial venule-expressing promiscuous chemokine receptor DARC can bind inflammatory, but not lymphoid, chemokines and is dispensable for lymphocyte homing under physiological conditions.
    Kashiwazaki M; Tanaka T; Kanda H; Ebisuno Y; Izawa D; Fukuma N; Akimitsu N; Sekimizu K; Monden M; Miyasaka M
    Int Immunol; 2003 Oct; 15(10):1219-27. PubMed ID: 13679391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiogenesis in Lymph Nodes Is a Critical Regulator of Immune Response and Lymphoma Growth.
    Menzel L; Höpken UE; Rehm A
    Front Immunol; 2020; 11():591741. PubMed ID: 33343570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Leptin Receptor
    Jiang L; Yilmaz M; Uehara M; Cavazzoni CB; Kasinath V; Zhao J; Naini SM; Li X; Banouni N; Fiorina P; Shin SR; Tullius SG; Bromberg JS; Sage PT; Abdi R
    Front Immunol; 2021; 12():730438. PubMed ID: 35111151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myo1g is required for efficient adhesion and migration of activated B lymphocytes to inguinal lymph nodes.
    Cruz-Zárate D; López-Ortega O; Girón-Pérez DA; Gonzalez-Suarez AM; García-Cordero JL; Schnoor M; Santos-Argumedo L
    Sci Rep; 2021 Mar; 11(1):7197. PubMed ID: 33785780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cosmc controls B cell homing.
    Zeng J; Eljalby M; Aryal RP; Lehoux S; Stavenhagen K; Kudelka MR; Wang Y; Wang J; Ju T; von Andrian UH; Cummings RD
    Nat Commun; 2020 Aug; 11(1):3990. PubMed ID: 32778659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lymphocyte access to lymphoma is impaired by high endothelial venule regression.
    Menzel L; Zschummel M; Crowley T; Franke V; Grau M; Ulbricht C; Hauser A; Siffrin V; Bajénoff M; Acton SE; Akalin A; Lenz G; Willimsky G; Höpken UE; Rehm A
    Cell Rep; 2021 Oct; 37(4):109878. PubMed ID: 34706240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes.
    Girard JP; Moussion C; Förster R
    Nat Rev Immunol; 2012 Nov; 12(11):762-73. PubMed ID: 23018291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingosine-1-Phosphate Receptor 4 Attenuates Neutrophilic Airway Inflammation in Experimental Asthma via Repressing Proinflammatory Macrophage Activation.
    Wang S; Tian Z; Lu Y; Huang Z; Fan Y; Li B; Zheng H; Wu X; Wang M; Zhao J; Xie J
    Int J Biol Sci; 2023; 19(5):1597-1615. PubMed ID: 37056936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional analyses of vascular network morphology in a murine lymph node by X-ray phase-contrast tomography with a 2D Talbot array.
    Schwarzenberg FL; Schütz P; Hammel JU; Riedel M; Bartl J; Bordbari S; Frank SC; Walkenfort B; Busse M; Herzen J; Lohr C; Wülfing C; Henne S
    Front Immunol; 2022; 13():947961. PubMed ID: 36524111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DOCK2 and phosphoinositide-3 kinase δ mediate two complementary signaling pathways for CXCR5-dependent B cell migration.
    Wissmann S; Stolp B; Jímenez AM; Stein JV
    Front Immunol; 2022; 13():982383. PubMed ID: 36341455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Squeezing Enables MHC Class I Antigen Presentation by Diverse Immune Cells to Elicit CD8
    Booty MG; Hlavaty KA; Stockmann A; Ozay EI; Smith C; Tian L; How E; Subramanya D; Venkitaraman A; Yee C; Pryor O; Volk K; Blagovic K; Vicente-Suarez I; Yarar D; Myint M; Merino A; Chow J; Abdeljawad T; An H; Liu S; Mao S; Heimann M; Talarico L; Jacques MK; Chong E; Pomerance L; Gonzalez JT; von Andrian UH; Jensen KF; Langer R; Knoetgen H; Trumpfheller C; Umaña P; Bernstein H; Sharei A; Loughhead SM
    J Immunol; 2022 Feb; 208(4):929-940. PubMed ID: 35091434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes.
    Choe K; Hontani Y; Wang T; Hebert E; Ouzounov DG; Lai K; Singh A; Béguelin W; Melnick AM; Xu C
    Nat Immunol; 2022 Feb; 23(2):330-340. PubMed ID: 35087231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Critical Importance of Spatial and Temporal Scales in Designing and Interpreting Immune Cell Migration Assays.
    Frattolin J; Watson DJ; Bonneuil WV; Russell MJ; Fasanella Masci F; Bandara M; Brook BS; Nibbs RJB; Moore JE
    Cells; 2021 Dec; 10(12):. PubMed ID: 34943947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lymph node swelling combined with temporary effector T cell retention aids T cell response in a model of adaptive immunity.
    Johnson SC; Frattolin J; Edgar LT; Jafarnejad M; Moore JE
    J R Soc Interface; 2021 Dec; 18(185):20210464. PubMed ID: 34847790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stepwise transmigration of T- and B cells through a perivascular channel in high endothelial venules.
    Choe K; Moon J; Lee SY; Song E; Back JH; Song JH; Hyun YM; Uchimura K; Kim P
    Life Sci Alliance; 2021 Aug; 4(8):. PubMed ID: 34187874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing biomaterials for lymphatic system modulation.
    Alderfer L; Hall E; Hanjaya-Putra D
    Acta Biomater; 2021 Oct; 133():34-45. PubMed ID: 34118451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High endothelial venules (HEVs) in immunity, inflammation and cancer.
    Blanchard L; Girard JP
    Angiogenesis; 2021 Nov; 24(4):719-753. PubMed ID: 33956259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotavirus infection causes mesenteric lymph node hypertrophy independently of type I interferon or TNF-α in mice.
    Nakawesi J; Konjit GM; Dasoveanu DC; Johansson-Lindbom B; Lahl K
    Eur J Immunol; 2021 May; 51(5):1143-1152. PubMed ID: 33354817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.